Category Archives: Uncategorized

China supplier Hot Sale T2.5 Timing Pulley for Belt Width 6mm axle cv joint

Product Description

Hot Sale T2.5 Timing Pulley for Belt Width 6mm

Products Type

We can custom shape,size,color material and quantity for plastic pulley as your requirment.

Products Specification
1. Various hardness for your choice.
2. Good abrasion, heat and oil resistance.
3. Good anti-aging performance and gas tightness.
4. Ease of bonding to other material.
5. Excellent oxygen and CZPT resistance.
6. Non-flammable,self-extinguish.  

Material PA,PA6,PA66,PP,PE,LDPE,HDPE,UWHDPE,PTFE,POM,ABS,or Custom Compound
(Any custom compound plastic is available)
Size According to samples or drawings
Color Black,white,red,green,transparent or any color according to Pantone colors
Finish High Gloss,Fine Grain,Electroplating,Painting,Printing,Texture etc,or as request
Type Round,square,rectangular,or any nonstandard shape as request
Logo Debossed,embossed,printed logo or as request

Plastic Material Properties

Company Profile
 
Zhongde (ZheJiang ) Machinery Equipment Co.,LTD  is a company integrated in design,OEM&ODM plastic&rubber&CNCparts production.We can provide the best products and service at a competitive price.

Main Products

We can provide OEM service,which means producing base on your drawings or samples,also we can design according to its application or customer`s requirments.

Order Operation Flow

We execute each step according to the operation process flow, strictly, seriously and meet the requirements of customers with good quality on time.

For Fast Quotation,Please Inform Below Details
1. Production type
2. Material specification (or let us know the using environmental)
3. Size details? (or provide drawings or samples for refference)
4. Quantity request
5. Prefer color
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Color: Customized
Type: Rotating Wheel
Surface Treatment: Customized
Size: Customized
Material: Plastic
Samples:
US$ 0.0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic belt

Can you provide insights into the future trends and developments in plastic belt technology for industrial conveyance?

Plastic belt technology for industrial conveyance is continuously evolving, driven by advancements in materials science, manufacturing processes, and industry demands. Here are some insights into the future trends and developments in plastic belt technology:

  • 1. Enhanced Material Formulations:

Future developments in plastic belt technology will likely involve the development of advanced material formulations with improved properties. Manufacturers are investing in research and development to enhance the strength, durability, and wear resistance of plastic belts. These developments may include the use of new polymers, additives, and reinforcement materials to create belts that can withstand higher loads, temperatures, and abrasive environments.

  • 2. Increased Customization:

Customization is becoming a significant trend in plastic belt technology. Conveyor systems are used in a wide range of industries with varying requirements, and customization allows for tailored solutions. In the future, plastic belt manufacturers may offer a wider range of customization options, such as belt width, surface patterns, and specialized coatings, to meet specific application needs. This trend will enable optimized performance, improved efficiency, and reduced maintenance for industrial conveyance systems.

  • 3. Integration of Smart Technologies:

Smart technologies are increasingly being integrated into industrial systems, and plastic belt technology is no exception. In the future, plastic belts may incorporate sensors, data collection devices, and connectivity features to enable real-time monitoring and analysis of belt performance. This integration of smart technologies will allow for predictive maintenance, early fault detection, and optimization of conveyor system efficiency. The data collected from the belts can be used to optimize operations, reduce downtime, and improve overall productivity.

  • 4. Focus on Sustainability:

Sustainability is a growing concern in the industrial sector, and future developments in plastic belt technology will likely reflect this trend. Manufacturers are exploring ways to reduce the environmental impact of plastic belts by incorporating recycled materials, adopting more sustainable manufacturing processes, and improving end-of-life management. Additionally, there may be an increased emphasis on designing belts that are lighter in weight, energy-efficient, and recyclable, thus further enhancing the sustainability profile of plastic belt technology.

  • 5. Advancements in Joining and Splicing Techniques:

The joining and splicing of plastic belts are critical for creating a continuous and reliable conveyor system. Future developments may focus on advancements in joining and splicing techniques to improve the strength, flexibility, and longevity of belt connections. This can involve the development of new bonding agents, welding methods, or mechanical fastening systems that provide stronger and more durable belt joints. These advancements will contribute to the overall performance and reliability of plastic belt technology in industrial conveyance.

In summary, the future of plastic belt technology for industrial conveyance is expected to witness advancements in material formulations, increased customization options, integration of smart technologies, a focus on sustainability, and improvements in joining and splicing techniques. These developments will drive enhanced performance, efficiency, and sustainability of conveyor systems, meeting the evolving needs of industries across various sectors.

plastic belt

Are there specific maintenance considerations for plastic belts in comparison to other conveyor belt materials?

Yes, there are specific maintenance considerations for plastic belts that differ from other conveyor belt materials. Here’s a detailed explanation:

  • 1. Cleaning and Sanitization:

Plastic belts generally have smoother and non-porous surfaces compared to other conveyor belt materials such as fabric or rubber. This characteristic makes plastic belts easier to clean and sanitize. They can be cleaned using standard cleaning agents, high-pressure washdowns, or even steam cleaning. Regular cleaning is essential to remove food residues, dirt, or contaminants and maintain the hygiene and cleanliness of plastic belts in applications such as food processing. However, it’s important to follow the manufacturer’s guidelines for cleaning methods and avoid using harsh chemicals that may damage the plastic material.

  • 2. Belt Tracking:

Proper belt tracking is important for the smooth and efficient operation of conveyor systems. Plastic belts may require more frequent monitoring and adjustment for proper tracking compared to other materials. Factors such as changes in tension, load distribution, or environmental conditions can affect belt tracking. Regular visual inspection and adjustment of tracking mechanisms, such as tensioners or tracking guides, are necessary to ensure the plastic belts stay aligned and centered on the conveyor system.

  • 3. Wear and Tear:

Plastic belts can experience wear and tear over time due to factors such as friction, load impacts, or abrasive materials. Regular inspection of the belt surface for signs of wear, including cracks, tears, or fraying, is important to identify potential issues early. Some plastic belts may have wear indicators that help determine when the belt needs to be replaced. It’s essential to follow the manufacturer’s recommendations for belt replacement intervals and consider using reinforced or heavy-duty plastic belts in applications where increased durability is required.

  • 4. Temperature Considerations:

Plastic belts have specific temperature limitations compared to other conveyor belt materials. Extreme temperatures can affect the performance and longevity of plastic belts. High temperatures can cause plastic belts to soften or deform, while low temperatures can make them brittle and prone to cracking. It’s important to choose plastic belts that are suitable for the temperature range of the application. In outdoor environments or applications with temperature fluctuations, using plastic belts with appropriate temperature resistance or considering additional insulation measures may be necessary.

  • 5. Chemical Exposure:

Plastic belts may have different chemical resistance properties compared to other conveyor belt materials. Exposure to certain chemicals or corrosive substances can degrade the plastic material and compromise the belt’s performance. It’s crucial to select plastic belts that are compatible with the specific chemicals present in the application and consider using chemical-resistant coatings or additives if needed. Regular inspection for signs of chemical damage and prompt replacement of damaged belts are essential to maintain the integrity and functionality of plastic belts.

In summary, plastic belts have specific maintenance considerations compared to other conveyor belt materials. Cleaning and sanitization procedures, belt tracking, monitoring wear and tear, temperature considerations, and chemical exposure are important aspects to address when maintaining plastic belts. Following manufacturer’s guidelines, conducting regular inspections, and implementing appropriate maintenance practices can help ensure the longevity and optimal performance of plastic belts in conveyor systems.

plastic belt

How do plastic belts contribute to the efficiency and functionality of conveyor systems?

Plastic belts play a crucial role in enhancing the efficiency and functionality of conveyor systems. Here’s a detailed explanation:

  • 1. Lightweight and High Strength:

Plastic belts are typically lightweight yet offer high strength and load-carrying capacity. Their lightweight nature reduces the overall weight of the conveyor system, resulting in lower energy consumption and reduced strain on the system’s components. Despite their lightness, plastic belts can handle heavy loads, making them suitable for a wide range of applications while maintaining efficiency and functionality.

  • 2. Flexibility and Adaptability:

Plastic belts are highly flexible and adaptable, allowing them to conform to the shape of the conveyor system. This flexibility enables the belts to navigate around pulleys, curves, and other obstacles smoothly. It also facilitates easy installation and adjustment of the conveyor system, making it more versatile and accommodating to different layout configurations. The adaptability of plastic belts contributes to efficient material handling and optimized system functionality.

  • 3. Low Friction and Energy Efficiency:

Plastic belts have low friction characteristics, which significantly reduce energy consumption in conveyor systems. The low coefficient of friction between the belt and the conveyor components minimizes resistance and allows for smooth movement of materials. This low friction property not only enhances the efficiency of the system but also reduces wear and tear on the belt and other system components, leading to extended service life and reduced maintenance requirements.

  • 4. Chemical Resistance and Hygiene:

Plastic belts are often resistant to chemicals, oils, and other substances, making them suitable for conveying materials in various industries, including food processing, pharmaceuticals, and manufacturing. Their chemical resistance ensures that the belts can withstand exposure to corrosive or potentially harmful substances without degradation or contamination. Additionally, plastic belts can be easily cleaned and sanitized, promoting hygiene and meeting strict industry standards in applications where cleanliness is essential.

  • 5. Noise Reduction:

Compared to traditional conveyor belts made of materials like metal or rubber, plastic belts offer noise reduction benefits. Plastic belts produce less noise during operation due to their inherent damping properties. This noise reduction is especially advantageous in environments where noise levels need to be minimized, such as in retail settings or sensitive manufacturing processes, contributing to a quieter and more comfortable work environment.

  • 6. Durability and Longevity:

Plastic belts are known for their durability and longevity. They are resistant to wear, abrasion, and impact, ensuring reliable and long-lasting performance in demanding conveyor applications. Plastic belts are less susceptible to damage from moisture, temperature variations, and other environmental factors, which can compromise the functionality of other belt materials. Their durability and longevity contribute to increased uptime, reduced downtime, and overall cost savings in conveyor system operation.

In summary, plastic belts offer several advantages that contribute to the efficiency and functionality of conveyor systems. Their lightweight yet high-strength construction, flexibility and adaptability, low friction characteristics, chemical resistance, noise reduction properties, and durability make them valuable components in a wide range of industries. By utilizing plastic belts, conveyor systems can achieve improved material handling efficiency, reduced energy consumption, enhanced hygiene, minimized maintenance requirements, and extended service life.

China supplier Hot Sale T2.5 Timing Pulley for Belt Width 6mm   axle cv jointChina supplier Hot Sale T2.5 Timing Pulley for Belt Width 6mm   axle cv joint
editor by CX 2024-02-26

China Good quality Promotion Price Car Retainer Clips Plastic Fasteners Kit Aut Car Clip Fan Car Seat Belt Clip Buckle with Great quality

Product Description

Auto Part car Nylon/Metal/Plastic Rivet/Nuts/Bolts/Screws/Clips/Retainer/Fasteners

We have more than 3000 kinds auto clips.

Different typies ,colors and packing can be customized.

We have stock, ready-made molds, can be shipped quickly.

If you have interested in our priducts,we can offer free sample.

Product Description

Features:

  • Be made of Environmental friendly plastic which is high quality and durable for using.
  • This bumper rivets fasteners set are made of plastic,won’t rust or rot. can use for a long time.
  • It is very easy to use, it is push type, rivet heads pressure expand to its legs, easy to install quickly.
  • They are be used for trim panel clips, door trim clips, door panel clips, bumper clips, Fender clips,
  • engine cover and splash shield retainers replacement.
  • These clips are suitable for firmly holding anything within a fit diameter hole.
Product name Nylon Plastic Push Snap Rivets/Clips/Fasters
Colour Customized
Material POM,PP,Plastic,Nylon
Birthplace Chinese Mainland
Warranty 1 year
Port HangZhou,ZheJiang ,HangZhou,HangZhou
MOQ 1000
Payment TT, Western Union, Ali-pay, Credit Card, Bank transfer, Cash
Packing packaging can according to the customers’ requirements
can packed in plastic bags or in the plastic boxes

More Types wait your inquiry !
Let’s talk more !

 

Installation Process

Packaging

Company Profile

1.CZPT is 1 of the leading exporter in China, specializing in the field of auto parts since 2002. 

2.We are a professional factory located in China with the most efficient exporting process.
We can supply Nylon/Metal/Plastic/Rivet/Nuts/Bolts/Screws/Clips/Retainer/Fasteners

3.We have strong relationships with our clients in most of around the world, North America, Europe, South America, South Asia, Middle East and Africa!

4.The products we provide can match with your different requirements. 
Choose us, CZPT never let you down ! !

Our Services & Strength

1. More than 3000 typies of auto clips, 20 sets of different tool kit and 3D accessories strip
2. All of our products are in high quality.
3. 100% test before delivery , 100% responssible for quality issue aftersale.
4. MOQ 1000 pcs, accept small order.

We don’t just sell goods, we sell partnership. We provide customers with good service,  get the trust of customers with a good reputation.
No matter your order is large or small, we are CZPT to provide you with the utmost services and 100% responsible for quality aftersale.

Wholeheartedly to offer each of our customers the best products, looking forward to servicing your needs.

FAQ

Q1. What is your terms of packing?
A: Generally, we pack our goods in neutral white boxes and brown cartons.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery.
    We’ll show you the photos of the products and packages before you pay the balance.
    Western Union/Credit Card

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF.

Q4. How about your delivery time?
A: Generally, it will take 7-10 days.
     The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock.
    But the customers have to pay the sample cost and the courier cost.

Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, 
   no matter where they come from.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Auto Fastener & Clip
Products Name: Auto Fastener Clip Auto Accessories
Application: All Car
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic belt

What are the challenges associated with using plastic belts, and how can they be mitigated?

Using plastic belts in various applications comes with its own set of challenges. However, these challenges can be mitigated through various measures. Here’s a detailed explanation:

  • 1. Temperature Limitations:

One of the challenges associated with plastic belts is their temperature limitations. Some plastic materials may have lower heat resistance compared to other belt materials like steel or rubber. In high-temperature environments, plastic belts may experience softening, deformation, or even melting, leading to a decrease in their performance and lifespan. To mitigate this challenge, it is important to select plastic belts with materials specifically designed to withstand the temperature range of the application. Additionally, incorporating cooling systems, such as ventilation or water cooling, can help maintain the belt’s temperature within acceptable limits.

  • 2. Load Capacity:

Another challenge is the load capacity of plastic belts, particularly in heavy-duty applications. While plastic belts have been engineered to handle significant loads, there may be limitations compared to materials like steel or fabric-reinforced rubber belts. To mitigate this challenge, it is essential to carefully analyze the weight and characteristics of the conveyed materials and select plastic belts with appropriate load-carrying capacity. Reinforcement technologies, such as embedded fibers or metal cords, can be used to enhance the strength and load capacity of plastic belts for heavier applications.

  • 3. Abrasion and Wear:

Plastic belts may face challenges related to abrasion and wear, especially in applications where materials with sharp edges or abrasive properties are being conveyed. Continuous contact with abrasive materials can cause premature wear and reduce the belt’s lifespan. To mitigate this challenge, plastic belts with enhanced wear resistance properties, such as specialized surface coatings or harder material formulations, can be used. Regular inspection and maintenance of the belts, including cleaning and proper tensioning, can also help identify and address any signs of wear before they become significant issues.

  • 4. Chemical Compatibility:

In applications where plastic belts come into contact with chemicals or substances, compatibility with those chemicals can be a challenge. Certain chemicals may cause degradation or weakening of the belt material, leading to reduced performance or even failure. To mitigate this challenge, it is crucial to select plastic belts with materials that are chemically resistant to the specific substances encountered in the application. Conducting chemical compatibility tests and consulting with belt manufacturers can help ensure that the selected plastic belts can withstand the chemical environment they will be exposed to.

  • 5. Belt Tracking and Alignment:

Plastic belts may face challenges related to tracking and alignment on the conveyor system. Misalignment can lead to increased friction, uneven wear, and potential damage to the belt and other conveyor components. To mitigate this challenge, proper belt tracking systems should be implemented, including precision tracking rollers, training idlers, or automated belt tracking mechanisms. Regular maintenance and inspection of the conveyor system can help identify and correct any issues with belt tracking and alignment before they cause significant problems.

  • 6. Static Electricity:

Plastic belts can generate static electricity due to friction between the belt and the conveyed materials or the conveyor system. This static electricity can cause issues such as dust attraction, product sticking, or even electrical discharge hazards. To mitigate this challenge, anti-static additives or coatings can be incorporated into the belt material to dissipate static charges. Proper grounding of the conveyor system and the use of static eliminators, such as ionizers or grounding brushes, can also help minimize static electricity-related problems.

In summary, while there are challenges associated with using plastic belts, they can be effectively mitigated through appropriate measures. By carefully selecting belts with suitable temperature resistance, load capacity, and wear resistance, and implementing measures to address issues related to chemical compatibility, belt tracking, and static electricity, the challenges can be managed. Regular maintenance, inspection, and adherence to manufacturer guidelines are essential for ensuring the optimal performance and longevity of plastic belts in various applications.

plastic belt

Can you provide examples of products or machinery that utilize plastic belts for conveying purposes?

Many products and machinery across various industries utilize plastic belts for conveying purposes. Here are some examples:

  • 1. Conveyor Systems:

Plastic belts are extensively used in conveyor systems across different industries. These systems can be found in manufacturing facilities, warehouses, distribution centers, airports, and more. Conveyor systems equipped with plastic belts are employed for the transportation of a wide range of products, including packaged goods, automotive components, electronics, pharmaceuticals, food items, and beverages.

  • 2. Food Processing Equipment:

In the food processing industry, various equipment utilizes plastic belts for conveying purposes. Examples include food sorting and grading machines, washing and cleaning systems, baking ovens, cooling and freezing tunnels, and packaging lines. Plastic belts are chosen for their hygienic properties, easy cleanability, and ability to withstand the rigorous demands of food processing environments.

  • 3. Bottling and Packaging Machinery:

Bottling and packaging machinery extensively employ plastic belts for efficient product handling and packaging. Equipment such as filling machines, capping machines, labelers, cartoners, and case packers utilize plastic belts to transport bottles, containers, boxes, and other packaging materials. Plastic belts allow for smooth and precise conveying, ensuring accurate positioning and high-speed operations in the bottling and packaging processes.

  • 4. Automated Material Handling Systems:

Automated material handling systems, commonly used in industries such as automotive, electronics, and e-commerce, rely on plastic belts for conveying and sorting purposes. These systems utilize plastic belts to transport products between different stages of the production line, sort items based on various criteria, and load or unload materials in warehouses or distribution centers. Plastic belts enable efficient and reliable material handling in these automated systems.

  • 5. Printing and Paper Handling Equipment:

Printing presses, bindery equipment, and paper handling machines often incorporate plastic belts for the smooth movement of paper sheets, printed materials, or packaging components. Plastic belts with anti-static properties are particularly used in these applications to prevent static buildup and ensure the safe handling of sensitive materials.

  • 6. Cleanroom and Electronics Manufacturing Equipment:

Cleanroom environments and electronics manufacturing facilities utilize plastic belts for conveying delicate electronic components, circuit boards, and semiconductors. Plastic belts with low particulate generation and excellent cleanroom compatibility are crucial in these industries to maintain strict cleanliness standards and prevent contamination or damage to sensitive electronic devices.

These are just a few examples of products and machinery that utilize plastic belts for conveying purposes. Plastic belts offer versatility, reliability, and customization options, making them suitable for a wide range of applications across various industries.

plastic belt

Can you describe the different types of plastic belts available in the market today?

There are several different types of plastic belts available in the market today, each designed to meet specific application requirements. Here’s an overview of some commonly used types:

  • 1. Modular Plastic Belts:

Modular plastic belts consist of interlocking plastic modules or links that form a continuous belt. These belts offer flexibility, allowing them to navigate around corners, bends, and other obstacles smoothly. They are commonly used in applications that require accumulation, incline/decline conveying, or small product transfer. Modular plastic belts are available in various configurations, such as flat-top, flush-grid, and raised-rib designs, to accommodate different product types and handling requirements.

  • 2. Solid Plastic Belts:

Solid plastic belts are made from a single piece of plastic material without interlocking modules. They offer a smooth and continuous surface, making them suitable for applications that require stable and consistent product conveying. Solid plastic belts are often used in industries such as food processing, where hygiene, easy cleaning, and resistance to contamination are crucial.

  • 3. Cleated Plastic Belts:

Cleated plastic belts feature integrally molded cleats or projections on their surface. These cleats help to prevent product slippage and facilitate the inclined or vertical movement of bulk materials or packages. Cleated plastic belts are commonly used in applications such as incline or decline conveying, sorting, and elevating products in industries like agriculture, recycling, and manufacturing.

  • 4. Wire Mesh Plastic Belts:

Wire mesh plastic belts consist of a plastic mesh overlaying metal or plastic rods. These belts offer an open and breathable surface, allowing for easy drainage, airflow, and visual inspection of conveyed products. They are often used in applications where heat, steam, or liquids need to pass through the belt, such as baking ovens, washing processes, or drying operations in the food industry.

  • 5. Vacuum Plastic Belts:

Vacuum plastic belts are designed with a perforated or porous surface that allows the application of vacuum pressure to hold and stabilize lightweight or delicate products during conveying. These belts are commonly used in industries such as electronics, printing, and packaging, where precise positioning and gentle handling of products are required.

  • 6. Anti-Static Plastic Belts:

Anti-static plastic belts are specifically designed to dissipate static electricity and prevent the buildup of electrostatic charges. They are used in applications where static discharge could damage sensitive electronic components or create safety hazards. Anti-static plastic belts are commonly employed in electronics manufacturing, semiconductor production, and cleanroom environments.

These are just a few examples of the different types of plastic belts available in the market today. The choice of plastic belt depends on factors such as the application requirements, load capacity, product characteristics, environmental conditions, and industry-specific regulations. Manufacturers often offer a range of customization options to tailor the belt design, material, and features to meet the specific needs of their customers.

China Good quality Promotion Price Car Retainer Clips Plastic Fasteners Kit Aut Car Clip Fan Car Seat Belt Clip Buckle   with Great quality China Good quality Promotion Price Car Retainer Clips Plastic Fasteners Kit Aut Car Clip Fan Car Seat Belt Clip Buckle   with Great quality
editor by CX 2024-02-26

China high quality Customized Plastic Timing Belt Pulley / Sliding Door Roller / Cable Pulling Rollers broken axle on car

Product Description

Customized Plastic Timing Belt Pulley / Sliding Door Roller / Cable Pulling Rollers

Products Type

We can custom shape,size,color material and quantity for plastic pulley as your requirment.

Products Specification
1. Various hardness for your choice.
2. Good abrasion, heat and oil resistance.
3. Good anti-aging performance and gas tightness.
4. Ease of bonding to other material.
5. Excellent oxygen and CZPT resistance.
6. Non-flammable,self-extinguish.  

Material PA,PA6,PA66,PP,PE,LDPE,HDPE,UWHDPE,PTFE,POM,ABS,or Custom Compound
(Any custom compound plastic is available)
Size According to samples or drawings
Color Black,white,red,green,transparent or any color according to Pantone colors
Finish High Gloss,Fine Grain,Electroplating,Painting,Printing,Texture etc,or as request
Type Round,square,rectangular,or any nonstandard shape as request
Logo Debossed,embossed,printed logo or as request

Plastic Material Properties

Company Profile
 
Zhongde (ZheJiang ) Machinery Equipment Co.,LTD  is a company integrated in design,OEM&ODM plastic&rubber&CNCparts production.We can provide the best products and service at a competitive price.

Main Products

We can provide OEM service,which means producing base on your drawings or samples,also we can design according to its application or customer`s requirments.

Order Operation Flow

We execute each step according to the operation process flow, strictly, seriously and meet the requirements of customers with good quality on time.

For Fast Quotation,Please Inform Below Details
1. Production type
2. Material specification (or let us know the using environmental)
3. Size details? (or provide drawings or samples for refference)
4. Quantity request
5. Prefer color
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Color: Customized
Type: Rotating Wheel
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|

Order Sample

For sample price, package information, and logisti
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic belt

Can you explain the impact of temperature and chemical exposure on plastic belt performance?

The impact of temperature and chemical exposure on plastic belt performance is significant. Here’s a detailed explanation:

  • Temperature:

Temperature can have both immediate and long-term effects on plastic belt performance. Extreme temperatures can cause plastic belts to undergo physical changes that affect their structural integrity and functionality. Here are the impacts of temperature:

  • High Temperatures:

Exposure to high temperatures can cause plastic belts to soften or deform. This softening can lead to belt elongation, loss of tension, and reduced load-carrying capacity. In extreme cases, the belt may become misaligned or even melt, resulting in operational disruptions and potential damage to the conveyor system. It’s crucial to select plastic belts that can withstand the elevated temperatures of the application to ensure reliable performance and prevent premature failure.

  • Low Temperatures:

Low temperatures can make plastic belts more brittle and susceptible to cracking or breakage. The reduced flexibility of the belt material can lead to increased stress concentrations, especially in areas with sharp bends or high impact loads. Brittle belts are more prone to damage during operation, which can result in belt failure and system downtime. Choosing plastic belts specifically designed for low-temperature environments or implementing insulation measures can help mitigate the negative impact of cold temperatures on belt performance.

  • Chemical Exposure:

Chemical exposure can significantly affect plastic belt performance, depending on the type and concentration of chemicals involved. Plastic belts can experience various forms of chemical degradation, including:

  • Chemical Attack:

Some chemicals can react with the plastic material, causing it to break down or degrade. This chemical attack can result in the loss of material strength, increased brittleness, or changes in the belt’s physical properties. The severity of chemical attack depends on the specific chemical composition of the belt and the nature and concentration of the chemicals it comes into contact with. It’s crucial to select plastic belts with appropriate chemical resistance properties based on the application’s chemical environment.

  • Swelling or Dissolution:

Certain chemicals can cause plastic belts to swell or dissolve. Swelling occurs when the belt absorbs the chemical, leading to dimensional changes and potential belt misalignment. Dissolution happens when the chemical breaks down the plastic material, resulting in loss of belt structure and strength. Swelling and dissolution can compromise the integrity of the belt and its ability to perform effectively. Choosing plastic belts with resistance to the specific chemicals present in the application is essential to prevent these issues.

  • Surface Damage:

Chemical exposure can also cause surface damage to plastic belts. Some chemicals may cause staining, discoloration, or surface roughness, which can impact the belt’s appearance and potentially affect its functionality. Additionally, chemicals with abrasive properties can cause physical wear and tear on the belt surface, reducing its lifespan and increasing the risk of belt failure. Regular inspection and prompt replacement of chemically damaged belts are necessary to maintain optimal performance and prevent potential contamination of the conveyed products.

In summary, temperature and chemical exposure have significant impacts on plastic belt performance. Extreme temperatures can lead to softening, deformation, or brittleness of the belt material, affecting its structural integrity and load-carrying capacity. Chemical exposure can cause chemical attack, swelling, dissolution, or surface damage, compromising the belt’s strength, dimensional stability, and overall functionality. Selecting plastic belts designed for the specific temperature range and chemical environment of the application, along with regular inspection and maintenance, is crucial to ensure reliable and long-lasting performance of plastic belts in conveyor systems.

plastic belt

What factors should be considered when selecting plastic belts for different industrial applications?

When selecting plastic belts for different industrial applications, several factors should be taken into consideration. Here are the key factors to consider:

  • 1. Application Requirements:

Understand the specific requirements of the application. Consider factors such as the type of products being conveyed, the weight and size of the loads, the desired conveying speed, the operating temperature range, the presence of moisture or chemicals, and any special handling needs. Clear knowledge of the application requirements will help in selecting a plastic belt with the appropriate characteristics and capabilities.

  • 2. Belt Configuration and Design:

Consider the belt configuration and design that best suits the application. Different plastic belts come in various configurations, including flat-top, flush-grid, raised-rib, and modular designs. Evaluate the belt’s surface texture, open area percentage, and any specialized features such as cleats, perforations, or vacuum capabilities. The belt design should align with the product characteristics, conveying conditions, and any specific requirements like incline/decline conveying or product diverting.

  • 3. Material Selection:

Choose the appropriate plastic material for the belt based on the application’s demands. Common plastic materials used for belts include polyethylene (PE), polypropylene (PP), acetal (POM), polyvinyl chloride (PVC), and polyurethane (PU). Consider factors such as chemical resistance, temperature resistance, wear resistance, flexibility, and food-grade compliance. Ensure the selected material can withstand the operating conditions and environmental factors that the belt will encounter.

  • 4. Load Capacity and Durability:

Evaluate the load capacity requirements of the application and select a plastic belt that can handle the intended loads. Consider the weight capacity per unit width and the overall strength and durability of the belt. Factors such as the belt’s tensile strength, impact resistance, and resistance to abrasion or wear are important for ensuring the longevity and reliability of the belt in demanding industrial environments.

  • 5. Cleanability and Hygiene:

In industries with stringent hygiene requirements, such as food processing or pharmaceuticals, prioritize plastic belts that are easy to clean and sanitize. Look for belts with smooth, non-porous surfaces that resist bacterial growth and are compatible with regular washdown procedures. Consider whether the belt can withstand cleaning agents and temperature variations without degradation or compromising its hygienic properties.

  • 6. Compatibility with Conveyor System:

Ensure the selected plastic belt is compatible with the existing or planned conveyor system. Consider factors such as the belt’s width and length options, the type of conveyor system (e.g., flatbed, roller, or modular), the compatibility of the belt’s sprockets or pulleys with the conveyor system, and the ease of installation and maintenance. Proper compatibility will ensure smooth integration and optimal performance of the belt within the conveyor system.

  • 7. Cost and Long-Term Value:

Evaluate the cost-effectiveness and long-term value of the plastic belt. Consider not only the upfront cost of the belt but also its expected lifespan, maintenance requirements, and potential savings in terms of reduced downtime, increased productivity, and lower operational costs. Balancing cost considerations with the desired performance and durability will help in selecting a plastic belt that delivers the best value for the specific industrial application.

By considering these factors in the selection process, industries can choose the most suitable plastic belt that meets the unique requirements of their industrial applications, ensuring efficient and reliable material handling operations.

plastic belt

What are plastic belts, and how are they used in various industries?

Plastic belts, also known as polymer belts or synthetic belts, are conveyor belts made from various types of plastic materials. These belts are used in a wide range of industries for conveying, transporting, or processing materials or products. Plastic belts offer several advantages over traditional belt materials such as rubber or fabric, including durability, versatility, and ease of maintenance. Here’s a detailed explanation of plastic belts and their applications in various industries:

  • Composition and Construction:
  • Plastic belts are typically made from materials such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PU), or acetal (POM). These materials provide properties such as high strength, chemical resistance, low friction, and flexibility. Plastic belts are manufactured through processes like extrusion, injection molding, or bonding, resulting in a wide variety of belt types, including flat belts, modular belts, timing belts, and conveyor chains.

  • Food and Beverage Industry:
  • Plastic belts find extensive use in the food and beverage industry. They are employed in applications such as food processing, packaging, sorting, and transportation. Plastic belts are preferred in these industries due to their hygienic properties, resistance to moisture and chemicals, and ease of cleaning. They are commonly used in conveying and sorting systems for products like fruits, vegetables, baked goods, meat, poultry, and beverages.

  • Automotive Industry:
  • In the automotive industry, plastic belts are utilized for various purposes. They are employed in assembly lines for transporting automotive components during the manufacturing process. Plastic belts with specialized features, such as high temperature resistance or static dissipation properties, are used in applications like paint shops, heat treatment processes, or electrostatic discharge-sensitive areas. Plastic belts provide reliable and efficient material handling solutions in automotive production facilities.

  • Packaging and Logistics:
  • Plastic belts play a crucial role in packaging and logistics operations. They are used in conveyor systems for handling packages, cartons, boxes, or containers in industries such as e-commerce, retail, distribution centers, and postal services. Plastic belts offer smooth and reliable transportation, enabling efficient sorting, merging, diverging, and accumulation of items. Their flexibility and customization options make them suitable for a wide range of packaging and logistics applications.

  • Agriculture and Horticulture:
  • In the agriculture and horticulture industries, plastic belts are employed for tasks like seed sorting, crop harvesting, and greenhouse operations. Plastic belts with specialized features like perforations or airflow patterns are used to facilitate the handling and processing of seeds, fruits, vegetables, or flowers. They provide gentle and efficient transportation, reducing damage to delicate agricultural products and improving productivity in these sectors.

  • Other Industries:
  • Plastic belts find applications in various other industries as well. They are used in industries such as pharmaceuticals, electronics, textile manufacturing, recycling, and airport baggage handling. Plastic belts offer advantages like chemical resistance, anti-static properties, and low noise levels, making them suitable for specific requirements in these industries.

In summary, plastic belts are conveyor belts made from plastic materials and are widely used in various industries. They offer durability, versatility, and ease of maintenance, making them suitable for applications in food and beverage processing, automotive manufacturing, packaging and logistics, agriculture and horticulture, and many other sectors. Plastic belts provide efficient material handling solutions, ensuring smooth transportation, sorting, and processing of products or materials in diverse industrial settings.

China high quality Customized Plastic Timing Belt Pulley / Sliding Door Roller / Cable Pulling Rollers   broken axle on carChina high quality Customized Plastic Timing Belt Pulley / Sliding Door Roller / Cable Pulling Rollers   broken axle on car
editor by CX 2024-02-25

China OEM Water Ring Pelletizing Line PP PE Plastic Recycling Granulating Machine Granulator axle cost

Product Description

 

Product Description

Water Ring Pelletizing Line PP PE Plastic Recycling Granulating Machine Granulator    which will be used as raw material for single screw extruding system, such as: PVC injection molinding machine, soft PVC product so on.

Water Ring Pelletizing Line PP PE Plastic Recycling Granulating Machine Granulator   including single screw extruder, pelletizing machine, air cooling system andvibration sieve.

 

This series compacting pelletizing line, it is a recycling machine designed for low density plastic articles. It could provide the excellent re-pelletizing and recycling solution for film, raffia, filament, woven bag and nonwoven fabric post soft or rigid
plastic. Our pellet making machine has a wide application in PE, PP, CPP, BOPP, PS, EPS, ABS, PA, PLA, PET waste plastic materials recycling field.

1. Belt conveyor feeding: as standard design, plastic scraps such as film, bag, filament, raffia conveyed into the compacting barrel through belt conveyor; to process rolls’ scraps, roll hauling off device is an optional feeding method. Motor drives of conveyor belt and hauling device cooperate with ABB inverter. Feeding speed of conveyor belt and roll hauling off is fully automatic based on compactor’s barrel’ space. Metal detector can combined with belt conveyor, and can interlock with control system, to warn and stop the system, in case that metal into the screw.

2. Compression barrel: crushing and compacting the material, the rotatory blades of compactor will cut up incoming scraps. Frictional heating which caused by high-speed rotatory blades will heat the scraps, and let them shrinking just below their agglomerating point. Optimal designed CZPT structure compacts the material and directs it into extruder screw. Crushes, dries and compacts the material, which enables a fast and stable feeding from the compactor directly into the extruder.

3. Extruder: to plasticization and degassing, a specialized single screw extruder applied to melt the pre-compacted material. The plastic scraps will well melted, plasticized in the first stage extruder, and the plastic will be extrude by the second stage extruder. With double-zone vacuum degassing system, volatiles such as low molecular and moisture will be removed efficiency, especially suitable to heavy printed film and material with some water content.

4. Non-stop hydraulic screen filter changer: double stage filtering, fore filtering in the first extruder, and fine filtering in the second extruder, to reduce the frequency of filtering sieves changing. The requirements on the filter technology depend heavily on the quality of the input material as well as the planned use of granules.

5. Cutting pelletizing: die-face water ring pelletizing system as the standard granulating method in Wedo system. Self-adjusting pelletizing head for the best granulate quality, and consistently correct blades pressure can ensure long running. Rotate speed of cutting blades is automatic based on melt extruding pressure. Advanced dewatering vibration sieve combining with vertical-type centrifugal dewatering present high performance dried pellets.
 

Model

Screw Diameter (mm)

L/D

Extruder motor (kw)

Output capacity (kg/h)

SJ90

90

28 -33

55

120-150

SJ100

100

  28 -33

75

180-200

SJ120

120

  28 -33

110

250-300

SJ140

140

  28 -33

132

300-400

SJ160

160

  28 -33

160

400-500

SJ180

180

  28 -33

200

500-600

Machine Details 

 

Factory Introduction

Qiangsheng is a professional factory for manufacturing series waste plastic recycling equipment (PET bottle recycling; PE/PP film, bags recycling, HDPE bottle /PP barrel recycling, and PP PE film pelletizing ,PP PE flakes pelletizing ,PP/PE/PVC corrugated pipe extruder etc).And we are have more than 20 years’ experience of making plastic machines: double-screw extruder, single-screw extruder,PVC ,PE,HDPE,PPR,pipe line. PVC WPC and PVC window profile line,PVC and ABS sheet machine,PVC foaming machine,PP,PE pelletizing machines and others auxiliary machine:crusher,mixer ,pipe belling machine ect.
Our products have been sold to many countries around the world ,like Egypt,Thaliand, Malaysia, India, Russia, Egypt, Turkey, Zambia, Algeria, Indonesia ect. The High quality, good service, as well as the low price of our machines has impressed our customers, and we have established a long-term relationship with each other.  
   

FAQ

Q:What kinds of product you supply?
A:Double-screw extruder, single-screw extruder,PVC ,PE,HDPE,PPR,pipe line. PVC WPC and PVC window profile line,PVC and ABS sheet machine,PVC foaming machine,PP,PE pelletizing machines and others auxiliary machine:crusher,mixer ,pipe belling machine ect.

  Q:Are you a machinery factory or trading company?
A:We have our own factory, you are welcome to visit at any time.

Q:If we have very special request for the production line,could you help me to do the design?
A:Yes, Our experienced mechanical designer customized-design provided.

Q:How can we guarantee quality?
A:We have an experienced R&D team to ensure the feasibility of the product before it is put into production, and our professional quality inspectors to inspect raw materials before production, conduct patrol inspection during production, and conduct re-inspection before delivery.

Q:Why should we buy from you not from other suppliers?
A:We can provide you with high-quality products to ensure the 2-year warranty service, which is longer than that of competitors.

Q:Installation and stuff training available from you?
A:Yes, our engineers will CZPT machine installation and train your workers.

Q:What`s the payment method?
A:T/T, L/C,Western Union,etc.

Q:What other services can you provide?
A:We can provide technical support such as plant plHangZhou according to your requirements, etc. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Warranty: 12 Months
Raw Material: PVC PE PP ABS
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic belt

Are there sustainability aspects associated with the use of plastic belts in conveyor systems?

Plastic belts in conveyor systems can have both positive and negative sustainability aspects. Here’s a detailed explanation:

  • Positive Sustainability Aspects:

Plastic belts offer several sustainability benefits when used in conveyor systems:

  • 1. Energy Efficiency:

Plastic belts contribute to energy efficiency in conveyor systems. Their low coefficient of friction and lightweight construction require less power to drive the belts, resulting in reduced energy consumption. By minimizing energy requirements, plastic belts help conserve energy resources and reduce greenhouse gas emissions associated with energy generation.

  • 2. Reduced Material Waste:

Plastic belts are typically designed for long-lasting performance and durability. They can withstand wear, abrasion, and exposure to various environments, resulting in extended service life. This longevity reduces the need for frequent belt replacements, minimizing material waste and reducing the environmental impact of manufacturing new belts.

  • 3. Recyclability:

Many plastic belts used in conveyor systems are recyclable. At the end of their life cycle, these belts can be collected, processed, and recycled into new plastic products. Recycling plastic belts helps divert waste from landfills and reduces the demand for virgin materials, contributing to a more circular and sustainable economy.

  • 4. Lightweight Design:

Plastic belts are lightweight compared to other belt materials like steel or rubber. This lightweight design reduces the overall weight of the conveyor system and the energy required to move the belts and conveyed materials. It also allows for easier installation and maintenance, reducing the need for heavy machinery and associated energy consumption.

  • Negative Sustainability Aspects:

While plastic belts offer sustainability benefits, there are also negative aspects to consider:

  • 1. Environmental Impact of Plastic:

Plastic belts are made from petroleum-based materials, and their production contributes to the extraction of fossil fuels and the emission of greenhouse gases. Additionally, if plastic belts are not properly managed at the end of their life cycle, they can end up in landfills or as litter, posing environmental challenges. To mitigate these negative aspects, it is crucial to promote responsible waste management practices, including recycling or proper disposal of plastic belts.

  • 2. Chemical and Resource Intensity:

The manufacturing process of plastic belts can involve the use of chemicals and resources, including energy and water. The extraction and processing of these resources can have environmental impacts, such as pollution and resource depletion. To address this, manufacturers can adopt more sustainable production practices, including the use of eco-friendly materials, energy-efficient manufacturing processes, and responsible water management.

  • 3. End-of-Life Management:

The disposal of plastic belts at the end of their life cycle can pose challenges if proper recycling infrastructure is lacking. If not recycled, the belts may end up in landfills, contributing to waste accumulation. To overcome this, it is important to establish and promote recycling programs for plastic belts, ensure accessibility to recycling facilities, and encourage the development of innovative recycling technologies.

In summary, the use of plastic belts in conveyor systems has sustainability aspects. Plastic belts offer energy efficiency, reduced material waste, recyclability, and lightweight design. However, the environmental impact of plastic, chemical and resource intensity in production, and proper end-of-life management should be considered to mitigate the negative aspects associated with plastic belt use. By adopting sustainable practices throughout the lifecycle of plastic belts, such as recycling and responsible manufacturing, the overall sustainability of conveyor systems can be improved.

plastic belt

Can plastic belts be customized for specific industries or conveyor configurations?

Yes, plastic belts can be customized to meet the specific requirements of different industries or conveyor configurations. Here’s a detailed explanation:

  • 1. Industry-Specific Customization:

Plastic belt manufacturers understand that different industries have unique needs and operating conditions. Therefore, they offer customization options to tailor plastic belts to specific industry requirements. For example:

  • In the food industry, plastic belts can be customized to meet stringent hygiene standards, such as having smooth surfaces for easy cleaning, being made from food-grade materials, or incorporating features like detectable materials for food safety.
  • In the automotive industry, plastic belts can be customized to withstand high temperatures, resist oil and grease, and have enhanced durability to handle heavy loads.
  • In the pharmaceutical industry, plastic belts can be customized to be resistant to chemicals, moisture, and microbial growth, ensuring compliance with strict regulatory requirements.
  • In the packaging industry, plastic belts can be customized to have specific surface textures or patterns for efficient product transfer, or they can be designed with specialized attachments for precise product positioning or diverting.
  • 2. Conveyor Configuration Customization:

Plastic belts can also be customized to match the specific conveyor configurations and requirements of individual applications. Conveyor systems come in various types, such as flatbed, roller, or modular conveyors, and may have unique characteristics or dimensions. Plastic belt manufacturers offer customization options to ensure a seamless fit with the conveyor system, including:

  • Customized belt widths and lengths to match the dimensions of the conveyor system.
  • Specialized belt designs, such as flat-top, flush-grid, or raised-rib configurations, based on the conveyor’s requirements for product stability, grip, or drainage.
  • Customized belt accessories, such as sprockets, pulleys, or cleats, designed to work seamlessly with the conveyor system and provide the desired functionality.
  • Modular plastic belts that can be easily assembled or reconfigured to fit different conveyor layouts or accommodate specific product handling needs.

Through industry-specific customization and conveyor configuration customization, plastic belts can be tailored to address the unique challenges and requirements of various industries and conveyor systems. This level of customization ensures optimal performance, efficiency, and reliability in material handling operations.

plastic belt

How do plastic belts contribute to the efficiency and functionality of conveyor systems?

Plastic belts play a crucial role in enhancing the efficiency and functionality of conveyor systems. Here’s a detailed explanation:

  • 1. Lightweight and High Strength:

Plastic belts are typically lightweight yet offer high strength and load-carrying capacity. Their lightweight nature reduces the overall weight of the conveyor system, resulting in lower energy consumption and reduced strain on the system’s components. Despite their lightness, plastic belts can handle heavy loads, making them suitable for a wide range of applications while maintaining efficiency and functionality.

  • 2. Flexibility and Adaptability:

Plastic belts are highly flexible and adaptable, allowing them to conform to the shape of the conveyor system. This flexibility enables the belts to navigate around pulleys, curves, and other obstacles smoothly. It also facilitates easy installation and adjustment of the conveyor system, making it more versatile and accommodating to different layout configurations. The adaptability of plastic belts contributes to efficient material handling and optimized system functionality.

  • 3. Low Friction and Energy Efficiency:

Plastic belts have low friction characteristics, which significantly reduce energy consumption in conveyor systems. The low coefficient of friction between the belt and the conveyor components minimizes resistance and allows for smooth movement of materials. This low friction property not only enhances the efficiency of the system but also reduces wear and tear on the belt and other system components, leading to extended service life and reduced maintenance requirements.

  • 4. Chemical Resistance and Hygiene:

Plastic belts are often resistant to chemicals, oils, and other substances, making them suitable for conveying materials in various industries, including food processing, pharmaceuticals, and manufacturing. Their chemical resistance ensures that the belts can withstand exposure to corrosive or potentially harmful substances without degradation or contamination. Additionally, plastic belts can be easily cleaned and sanitized, promoting hygiene and meeting strict industry standards in applications where cleanliness is essential.

  • 5. Noise Reduction:

Compared to traditional conveyor belts made of materials like metal or rubber, plastic belts offer noise reduction benefits. Plastic belts produce less noise during operation due to their inherent damping properties. This noise reduction is especially advantageous in environments where noise levels need to be minimized, such as in retail settings or sensitive manufacturing processes, contributing to a quieter and more comfortable work environment.

  • 6. Durability and Longevity:

Plastic belts are known for their durability and longevity. They are resistant to wear, abrasion, and impact, ensuring reliable and long-lasting performance in demanding conveyor applications. Plastic belts are less susceptible to damage from moisture, temperature variations, and other environmental factors, which can compromise the functionality of other belt materials. Their durability and longevity contribute to increased uptime, reduced downtime, and overall cost savings in conveyor system operation.

In summary, plastic belts offer several advantages that contribute to the efficiency and functionality of conveyor systems. Their lightweight yet high-strength construction, flexibility and adaptability, low friction characteristics, chemical resistance, noise reduction properties, and durability make them valuable components in a wide range of industries. By utilizing plastic belts, conveyor systems can achieve improved material handling efficiency, reduced energy consumption, enhanced hygiene, minimized maintenance requirements, and extended service life.

China OEM Water Ring Pelletizing Line PP PE Plastic Recycling Granulating Machine Granulator   axle costChina OEM Water Ring Pelletizing Line PP PE Plastic Recycling Granulating Machine Granulator   axle cost
editor by CX 2024-02-25

China OEM New Design PP Plastic V Groove Pulley cv axle puller

Product Description


Our Services

                                                            Product Design                                        Material Selection
                                                            Mold Design                                             Mold Making
                                                            Bulk Production                                        Logo Printing
                                                            Surface Treatment                                    Assembling
                                                            Packaging                                                 Door to Door Delivery

 

Material Nylon ,mc nylon, POM,ABS,PU,PP,PE,PTFE,UHMWPE,HDPE,LDPE, PVC,etc.
Color Black, white, red, green, transparent or any color according to Pantone code
Size As per customer’s requirements
Technology Injection molding, CNC machining, Extrusion
Surface Treatment Powder coating, Zinc coating, Galvanization, Electro-deposition coating, Chrome/zinc/nickel plating, Polishing, Silkscreen, Black oxide
Application Automotive, ATV, Mechanical equipment, Construction, Home appliance, Aviation,
Office facilities, Agriculture, etc.
Shippment We have longterm cooperation with internation shipping agent and express company, so that shipping safty and arriving time are secured

Detail Image

Why Choose Us

Our Machine

Product Range

Contact Us /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO
Pulley Sizes: Type E
Manufacturing Process: Forging
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|

Order Sample

Custom packaging, consult us for sample price
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic belt

Are there sustainability aspects associated with the use of plastic belts in conveyor systems?

Plastic belts in conveyor systems can have both positive and negative sustainability aspects. Here’s a detailed explanation:

  • Positive Sustainability Aspects:

Plastic belts offer several sustainability benefits when used in conveyor systems:

  • 1. Energy Efficiency:

Plastic belts contribute to energy efficiency in conveyor systems. Their low coefficient of friction and lightweight construction require less power to drive the belts, resulting in reduced energy consumption. By minimizing energy requirements, plastic belts help conserve energy resources and reduce greenhouse gas emissions associated with energy generation.

  • 2. Reduced Material Waste:

Plastic belts are typically designed for long-lasting performance and durability. They can withstand wear, abrasion, and exposure to various environments, resulting in extended service life. This longevity reduces the need for frequent belt replacements, minimizing material waste and reducing the environmental impact of manufacturing new belts.

  • 3. Recyclability:

Many plastic belts used in conveyor systems are recyclable. At the end of their life cycle, these belts can be collected, processed, and recycled into new plastic products. Recycling plastic belts helps divert waste from landfills and reduces the demand for virgin materials, contributing to a more circular and sustainable economy.

  • 4. Lightweight Design:

Plastic belts are lightweight compared to other belt materials like steel or rubber. This lightweight design reduces the overall weight of the conveyor system and the energy required to move the belts and conveyed materials. It also allows for easier installation and maintenance, reducing the need for heavy machinery and associated energy consumption.

  • Negative Sustainability Aspects:

While plastic belts offer sustainability benefits, there are also negative aspects to consider:

  • 1. Environmental Impact of Plastic:

Plastic belts are made from petroleum-based materials, and their production contributes to the extraction of fossil fuels and the emission of greenhouse gases. Additionally, if plastic belts are not properly managed at the end of their life cycle, they can end up in landfills or as litter, posing environmental challenges. To mitigate these negative aspects, it is crucial to promote responsible waste management practices, including recycling or proper disposal of plastic belts.

  • 2. Chemical and Resource Intensity:

The manufacturing process of plastic belts can involve the use of chemicals and resources, including energy and water. The extraction and processing of these resources can have environmental impacts, such as pollution and resource depletion. To address this, manufacturers can adopt more sustainable production practices, including the use of eco-friendly materials, energy-efficient manufacturing processes, and responsible water management.

  • 3. End-of-Life Management:

The disposal of plastic belts at the end of their life cycle can pose challenges if proper recycling infrastructure is lacking. If not recycled, the belts may end up in landfills, contributing to waste accumulation. To overcome this, it is important to establish and promote recycling programs for plastic belts, ensure accessibility to recycling facilities, and encourage the development of innovative recycling technologies.

In summary, the use of plastic belts in conveyor systems has sustainability aspects. Plastic belts offer energy efficiency, reduced material waste, recyclability, and lightweight design. However, the environmental impact of plastic, chemical and resource intensity in production, and proper end-of-life management should be considered to mitigate the negative aspects associated with plastic belt use. By adopting sustainable practices throughout the lifecycle of plastic belts, such as recycling and responsible manufacturing, the overall sustainability of conveyor systems can be improved.

plastic belt

Can plastic belts be customized for specific industries or conveyor configurations?

Yes, plastic belts can be customized to meet the specific requirements of different industries or conveyor configurations. Here’s a detailed explanation:

  • 1. Industry-Specific Customization:

Plastic belt manufacturers understand that different industries have unique needs and operating conditions. Therefore, they offer customization options to tailor plastic belts to specific industry requirements. For example:

  • In the food industry, plastic belts can be customized to meet stringent hygiene standards, such as having smooth surfaces for easy cleaning, being made from food-grade materials, or incorporating features like detectable materials for food safety.
  • In the automotive industry, plastic belts can be customized to withstand high temperatures, resist oil and grease, and have enhanced durability to handle heavy loads.
  • In the pharmaceutical industry, plastic belts can be customized to be resistant to chemicals, moisture, and microbial growth, ensuring compliance with strict regulatory requirements.
  • In the packaging industry, plastic belts can be customized to have specific surface textures or patterns for efficient product transfer, or they can be designed with specialized attachments for precise product positioning or diverting.
  • 2. Conveyor Configuration Customization:

Plastic belts can also be customized to match the specific conveyor configurations and requirements of individual applications. Conveyor systems come in various types, such as flatbed, roller, or modular conveyors, and may have unique characteristics or dimensions. Plastic belt manufacturers offer customization options to ensure a seamless fit with the conveyor system, including:

  • Customized belt widths and lengths to match the dimensions of the conveyor system.
  • Specialized belt designs, such as flat-top, flush-grid, or raised-rib configurations, based on the conveyor’s requirements for product stability, grip, or drainage.
  • Customized belt accessories, such as sprockets, pulleys, or cleats, designed to work seamlessly with the conveyor system and provide the desired functionality.
  • Modular plastic belts that can be easily assembled or reconfigured to fit different conveyor layouts or accommodate specific product handling needs.

Through industry-specific customization and conveyor configuration customization, plastic belts can be tailored to address the unique challenges and requirements of various industries and conveyor systems. This level of customization ensures optimal performance, efficiency, and reliability in material handling operations.

plastic belt

What are plastic belts, and how are they used in various industries?

Plastic belts, also known as polymer belts or synthetic belts, are conveyor belts made from various types of plastic materials. These belts are used in a wide range of industries for conveying, transporting, or processing materials or products. Plastic belts offer several advantages over traditional belt materials such as rubber or fabric, including durability, versatility, and ease of maintenance. Here’s a detailed explanation of plastic belts and their applications in various industries:

  • Composition and Construction:
  • Plastic belts are typically made from materials such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PU), or acetal (POM). These materials provide properties such as high strength, chemical resistance, low friction, and flexibility. Plastic belts are manufactured through processes like extrusion, injection molding, or bonding, resulting in a wide variety of belt types, including flat belts, modular belts, timing belts, and conveyor chains.

  • Food and Beverage Industry:
  • Plastic belts find extensive use in the food and beverage industry. They are employed in applications such as food processing, packaging, sorting, and transportation. Plastic belts are preferred in these industries due to their hygienic properties, resistance to moisture and chemicals, and ease of cleaning. They are commonly used in conveying and sorting systems for products like fruits, vegetables, baked goods, meat, poultry, and beverages.

  • Automotive Industry:
  • In the automotive industry, plastic belts are utilized for various purposes. They are employed in assembly lines for transporting automotive components during the manufacturing process. Plastic belts with specialized features, such as high temperature resistance or static dissipation properties, are used in applications like paint shops, heat treatment processes, or electrostatic discharge-sensitive areas. Plastic belts provide reliable and efficient material handling solutions in automotive production facilities.

  • Packaging and Logistics:
  • Plastic belts play a crucial role in packaging and logistics operations. They are used in conveyor systems for handling packages, cartons, boxes, or containers in industries such as e-commerce, retail, distribution centers, and postal services. Plastic belts offer smooth and reliable transportation, enabling efficient sorting, merging, diverging, and accumulation of items. Their flexibility and customization options make them suitable for a wide range of packaging and logistics applications.

  • Agriculture and Horticulture:
  • In the agriculture and horticulture industries, plastic belts are employed for tasks like seed sorting, crop harvesting, and greenhouse operations. Plastic belts with specialized features like perforations or airflow patterns are used to facilitate the handling and processing of seeds, fruits, vegetables, or flowers. They provide gentle and efficient transportation, reducing damage to delicate agricultural products and improving productivity in these sectors.

  • Other Industries:
  • Plastic belts find applications in various other industries as well. They are used in industries such as pharmaceuticals, electronics, textile manufacturing, recycling, and airport baggage handling. Plastic belts offer advantages like chemical resistance, anti-static properties, and low noise levels, making them suitable for specific requirements in these industries.

In summary, plastic belts are conveyor belts made from plastic materials and are widely used in various industries. They offer durability, versatility, and ease of maintenance, making them suitable for applications in food and beverage processing, automotive manufacturing, packaging and logistics, agriculture and horticulture, and many other sectors. Plastic belts provide efficient material handling solutions, ensuring smooth transportation, sorting, and processing of products or materials in diverse industrial settings.

China OEM New Design PP Plastic V Groove Pulley   cv axle pullerChina OEM New Design PP Plastic V Groove Pulley   cv axle puller
editor by CX 2024-02-24

China high quality Hzpk Arlm-160A Pet Bottle Labler Labeling Machine Price axle extender

Product Description

1. More than10 years manufacture in packing machine
2. 10 years alibaba supplier
3. 100% QC inspection before shipment
4. 12 months warranty
5. Product Certificated by CE
 

Introduction:
ARLM-160A Automatic Labeling Machine can meet the needs of semi circle labeling, bottle labeling switching between simple, convenient adjustment; 
Wide application range: self-adhesive labels, adhesive film, electronic monitoring code, bar code etc..
Application Industry: widely used in food, medicine, cosmetics, daily chemical, electronics, hardware, plastics and other industries. 
Application example: PET round bottle labeling, plastic bottle labeling, canned food, etc.

Features:
1. Labeling quality, using standard of spring cover belt, labeling smooth, no wrinkles, improve packaging quality.
2. Flexible application, bottle stand vertical labeling, with automatic sub bottle function, can be stand-alone production, can also be connected to the production line.
3. Intelligent control, automatic photoelectric tracking, with no matter no labeling, no standard automatic calibration and label automatic detection function, prevent leakage and label waste.
4. Simple adjustment, labeling speed, conveying speed, bottle speed can be achieved stepless speed regulation, according to the need to adjust.
5. Durable, using 3 bar adjustment mechanism, make full use of triangular stability, solid durable machine. Made of stainless steel and advanced aluminum alloy, accord with CE Production requirements.

Customized Functions:
1. Can add coding,printing
2. The conveyor can be replaced with a chain plate
3. The width,length,hight can be customize   
4. The custom function is applicable to all automatic labeling machines
5. The machine can only be used to sticker labels, can be customized to stick transparent labels, need to change the optical fiber to transparent optical fiber.(Conventional label by induction color; Transparent label by induction thickness)

Note: 
This machine is standard machine, can only be used normal round bottles , can not be too soft or bulge. 
Can be customized if the bottle has grooves.

Parameter:

Model ARLM-160A
Power 550W
Filling speed 10-50PCS/min
Filling accuracy ±1%
Bottle diameter 30-150mm
Bottle high 10-500mm
Lable Weight 20-150mm
Lable Hight 30-160mm

Q: Are you a factory or a trading company? 
A: We are factory manufacturing packaging machines and weprovide perfect OEM and after-sale service. 

Q: Can you send me the video to show how the machine works?
A: Certainly, we have made video of every machine and uploaded  them to Youtube. 

Q: How can I know your machine works well?
A: Before delivery, we shall test the machine working condition for you. 

Q: How can I know your machine is designed for my product?
A: You can send us samples of your product and we test it on machine. 

Q: How can I pay my order?
A: We accept T/T, L/C paying methods. For those orders less than 500USD, we accept Trade Assurance to pay. 

Q: Do you have a CE certificate?
A: For every model of machine, it has a CE certificate.

Your Satisfaction is Our Honor

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Automatic Grade: Automatic
Applicable Industry: Food, Cosmetics, Agriculture, Medicine, Daily Chem
Application: Cosmetics, Drinks, Cleaning, Detergent, Skin Care Products, Hair Care Products, Oil, Tea, Fish, Meat, Snack, Seasoning, Dairy Products
Type: Automatic Labeling Machine
Driven Type: Electric
Classification: Automatic Vertical Round Bottle Labeling Machine
Customization:
Available

|

Customized Request

plastic belt

What are the challenges associated with using plastic belts, and how can they be mitigated?

Using plastic belts in various applications comes with its own set of challenges. However, these challenges can be mitigated through various measures. Here’s a detailed explanation:

  • 1. Temperature Limitations:

One of the challenges associated with plastic belts is their temperature limitations. Some plastic materials may have lower heat resistance compared to other belt materials like steel or rubber. In high-temperature environments, plastic belts may experience softening, deformation, or even melting, leading to a decrease in their performance and lifespan. To mitigate this challenge, it is important to select plastic belts with materials specifically designed to withstand the temperature range of the application. Additionally, incorporating cooling systems, such as ventilation or water cooling, can help maintain the belt’s temperature within acceptable limits.

  • 2. Load Capacity:

Another challenge is the load capacity of plastic belts, particularly in heavy-duty applications. While plastic belts have been engineered to handle significant loads, there may be limitations compared to materials like steel or fabric-reinforced rubber belts. To mitigate this challenge, it is essential to carefully analyze the weight and characteristics of the conveyed materials and select plastic belts with appropriate load-carrying capacity. Reinforcement technologies, such as embedded fibers or metal cords, can be used to enhance the strength and load capacity of plastic belts for heavier applications.

  • 3. Abrasion and Wear:

Plastic belts may face challenges related to abrasion and wear, especially in applications where materials with sharp edges or abrasive properties are being conveyed. Continuous contact with abrasive materials can cause premature wear and reduce the belt’s lifespan. To mitigate this challenge, plastic belts with enhanced wear resistance properties, such as specialized surface coatings or harder material formulations, can be used. Regular inspection and maintenance of the belts, including cleaning and proper tensioning, can also help identify and address any signs of wear before they become significant issues.

  • 4. Chemical Compatibility:

In applications where plastic belts come into contact with chemicals or substances, compatibility with those chemicals can be a challenge. Certain chemicals may cause degradation or weakening of the belt material, leading to reduced performance or even failure. To mitigate this challenge, it is crucial to select plastic belts with materials that are chemically resistant to the specific substances encountered in the application. Conducting chemical compatibility tests and consulting with belt manufacturers can help ensure that the selected plastic belts can withstand the chemical environment they will be exposed to.

  • 5. Belt Tracking and Alignment:

Plastic belts may face challenges related to tracking and alignment on the conveyor system. Misalignment can lead to increased friction, uneven wear, and potential damage to the belt and other conveyor components. To mitigate this challenge, proper belt tracking systems should be implemented, including precision tracking rollers, training idlers, or automated belt tracking mechanisms. Regular maintenance and inspection of the conveyor system can help identify and correct any issues with belt tracking and alignment before they cause significant problems.

  • 6. Static Electricity:

Plastic belts can generate static electricity due to friction between the belt and the conveyed materials or the conveyor system. This static electricity can cause issues such as dust attraction, product sticking, or even electrical discharge hazards. To mitigate this challenge, anti-static additives or coatings can be incorporated into the belt material to dissipate static charges. Proper grounding of the conveyor system and the use of static eliminators, such as ionizers or grounding brushes, can also help minimize static electricity-related problems.

In summary, while there are challenges associated with using plastic belts, they can be effectively mitigated through appropriate measures. By carefully selecting belts with suitable temperature resistance, load capacity, and wear resistance, and implementing measures to address issues related to chemical compatibility, belt tracking, and static electricity, the challenges can be managed. Regular maintenance, inspection, and adherence to manufacturer guidelines are essential for ensuring the optimal performance and longevity of plastic belts in various applications.

plastic belt

What factors should be considered when selecting plastic belts for different industrial applications?

When selecting plastic belts for different industrial applications, several factors should be taken into consideration. Here are the key factors to consider:

  • 1. Application Requirements:

Understand the specific requirements of the application. Consider factors such as the type of products being conveyed, the weight and size of the loads, the desired conveying speed, the operating temperature range, the presence of moisture or chemicals, and any special handling needs. Clear knowledge of the application requirements will help in selecting a plastic belt with the appropriate characteristics and capabilities.

  • 2. Belt Configuration and Design:

Consider the belt configuration and design that best suits the application. Different plastic belts come in various configurations, including flat-top, flush-grid, raised-rib, and modular designs. Evaluate the belt’s surface texture, open area percentage, and any specialized features such as cleats, perforations, or vacuum capabilities. The belt design should align with the product characteristics, conveying conditions, and any specific requirements like incline/decline conveying or product diverting.

  • 3. Material Selection:

Choose the appropriate plastic material for the belt based on the application’s demands. Common plastic materials used for belts include polyethylene (PE), polypropylene (PP), acetal (POM), polyvinyl chloride (PVC), and polyurethane (PU). Consider factors such as chemical resistance, temperature resistance, wear resistance, flexibility, and food-grade compliance. Ensure the selected material can withstand the operating conditions and environmental factors that the belt will encounter.

  • 4. Load Capacity and Durability:

Evaluate the load capacity requirements of the application and select a plastic belt that can handle the intended loads. Consider the weight capacity per unit width and the overall strength and durability of the belt. Factors such as the belt’s tensile strength, impact resistance, and resistance to abrasion or wear are important for ensuring the longevity and reliability of the belt in demanding industrial environments.

  • 5. Cleanability and Hygiene:

In industries with stringent hygiene requirements, such as food processing or pharmaceuticals, prioritize plastic belts that are easy to clean and sanitize. Look for belts with smooth, non-porous surfaces that resist bacterial growth and are compatible with regular washdown procedures. Consider whether the belt can withstand cleaning agents and temperature variations without degradation or compromising its hygienic properties.

  • 6. Compatibility with Conveyor System:

Ensure the selected plastic belt is compatible with the existing or planned conveyor system. Consider factors such as the belt’s width and length options, the type of conveyor system (e.g., flatbed, roller, or modular), the compatibility of the belt’s sprockets or pulleys with the conveyor system, and the ease of installation and maintenance. Proper compatibility will ensure smooth integration and optimal performance of the belt within the conveyor system.

  • 7. Cost and Long-Term Value:

Evaluate the cost-effectiveness and long-term value of the plastic belt. Consider not only the upfront cost of the belt but also its expected lifespan, maintenance requirements, and potential savings in terms of reduced downtime, increased productivity, and lower operational costs. Balancing cost considerations with the desired performance and durability will help in selecting a plastic belt that delivers the best value for the specific industrial application.

By considering these factors in the selection process, industries can choose the most suitable plastic belt that meets the unique requirements of their industrial applications, ensuring efficient and reliable material handling operations.

plastic belt

What are plastic belts, and how are they used in various industries?

Plastic belts, also known as polymer belts or synthetic belts, are conveyor belts made from various types of plastic materials. These belts are used in a wide range of industries for conveying, transporting, or processing materials or products. Plastic belts offer several advantages over traditional belt materials such as rubber or fabric, including durability, versatility, and ease of maintenance. Here’s a detailed explanation of plastic belts and their applications in various industries:

  • Composition and Construction:
  • Plastic belts are typically made from materials such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PU), or acetal (POM). These materials provide properties such as high strength, chemical resistance, low friction, and flexibility. Plastic belts are manufactured through processes like extrusion, injection molding, or bonding, resulting in a wide variety of belt types, including flat belts, modular belts, timing belts, and conveyor chains.

  • Food and Beverage Industry:
  • Plastic belts find extensive use in the food and beverage industry. They are employed in applications such as food processing, packaging, sorting, and transportation. Plastic belts are preferred in these industries due to their hygienic properties, resistance to moisture and chemicals, and ease of cleaning. They are commonly used in conveying and sorting systems for products like fruits, vegetables, baked goods, meat, poultry, and beverages.

  • Automotive Industry:
  • In the automotive industry, plastic belts are utilized for various purposes. They are employed in assembly lines for transporting automotive components during the manufacturing process. Plastic belts with specialized features, such as high temperature resistance or static dissipation properties, are used in applications like paint shops, heat treatment processes, or electrostatic discharge-sensitive areas. Plastic belts provide reliable and efficient material handling solutions in automotive production facilities.

  • Packaging and Logistics:
  • Plastic belts play a crucial role in packaging and logistics operations. They are used in conveyor systems for handling packages, cartons, boxes, or containers in industries such as e-commerce, retail, distribution centers, and postal services. Plastic belts offer smooth and reliable transportation, enabling efficient sorting, merging, diverging, and accumulation of items. Their flexibility and customization options make them suitable for a wide range of packaging and logistics applications.

  • Agriculture and Horticulture:
  • In the agriculture and horticulture industries, plastic belts are employed for tasks like seed sorting, crop harvesting, and greenhouse operations. Plastic belts with specialized features like perforations or airflow patterns are used to facilitate the handling and processing of seeds, fruits, vegetables, or flowers. They provide gentle and efficient transportation, reducing damage to delicate agricultural products and improving productivity in these sectors.

  • Other Industries:
  • Plastic belts find applications in various other industries as well. They are used in industries such as pharmaceuticals, electronics, textile manufacturing, recycling, and airport baggage handling. Plastic belts offer advantages like chemical resistance, anti-static properties, and low noise levels, making them suitable for specific requirements in these industries.

In summary, plastic belts are conveyor belts made from plastic materials and are widely used in various industries. They offer durability, versatility, and ease of maintenance, making them suitable for applications in food and beverage processing, automotive manufacturing, packaging and logistics, agriculture and horticulture, and many other sectors. Plastic belts provide efficient material handling solutions, ensuring smooth transportation, sorting, and processing of products or materials in diverse industrial settings.

China high quality Hzpk Arlm-160A Pet Bottle Labler Labeling Machine Price   axle extenderChina high quality Hzpk Arlm-160A Pet Bottle Labler Labeling Machine Price   axle extender
editor by CX 2024-02-24

China Best Sales Hzpk Arlm-160A Perfume Bottle Small Jar Labeling Machine with Printer example of wheel and axle

Product Description

1. More than10 years manufacture in packing machine
2. 10 years alibaba supplier
3. 100% QC inspection before shipment
4. 12 months warranty
5. Product Certificated by CE
 

Introduction:
ARLM-160A Automatic Labeling Machine can meet the needs of semi circle labeling, bottle labeling switching between simple, convenient adjustment; 
Wide application range: self-adhesive labels, adhesive film, electronic monitoring code, bar code etc..
Application Industry: widely used in food, medicine, cosmetics, daily chemical, electronics, hardware, plastics and other industries. 
Application example: PET round bottle labeling, plastic bottle labeling, canned food, etc.

Features:
1. Labeling quality, using standard of spring cover belt, labeling smooth, no wrinkles, improve packaging quality.
2. Flexible application, bottle stand vertical labeling, with automatic sub bottle function, can be stand-alone production, can also be connected to the production line.
3. Intelligent control, automatic photoelectric tracking, with no matter no labeling, no standard automatic calibration and label automatic detection function, prevent leakage and label waste.
4. Simple adjustment, labeling speed, conveying speed, bottle speed can be achieved stepless speed regulation, according to the need to adjust.
5. Durable, using 3 bar adjustment mechanism, make full use of triangular stability, solid durable machine. Made of stainless steel and advanced aluminum alloy, accord with CE Production requirements.

Customized Functions:
1. Can add coding,printing
2. The conveyor can be replaced with a chain plate
3. The width,length,hight can be customize   
4. The custom function is applicable to all automatic labeling machines
5. The machine can only be used to sticker labels, can be customized to stick transparent labels, need to change the optical fiber to transparent optical fiber.(Conventional label by induction color; Transparent label by induction thickness)

Note: 
This machine is standard machine, can only be used normal round bottles , can not be too soft or bulge. 
Can be customized if the bottle has grooves.

Parameter:

Model ARLM-160A
Power 550W
Filling speed 10-50PCS/min
Filling accuracy ±1%
Bottle diameter 30-150mm
Bottle high 10-500mm
Lable Weight 20-150mm
Lable Hight 30-160mm

Q: Are you a factory or a trading company? 
A: We are factory manufacturing packaging machines and weprovide perfect OEM and after-sale service. 

Q: Can you send me the video to show how the machine works?
A: Certainly, we have made video of every machine and uploaded  them to Youtube. 

Q: How can I know your machine works well?
A: Before delivery, we shall test the machine working condition for you. 

Q: How can I know your machine is designed for my product?
A: You can send us samples of your product and we test it on machine. 

Q: How can I pay my order?
A: We accept T/T, L/C paying methods. For those orders less than 500USD, we accept Trade Assurance to pay. 

Q: Do you have a CE certificate?
A: For every model of machine, it has a CE certificate.

Your Satisfaction is Our Honor

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Automatic Grade: Automatic
Applicable Industry: Food, Cosmetics, Agriculture, Medicine, Daily Chem
Application: Cosmetics, Drinks, Cleaning, Detergent, Skin Care Products, Hair Care Products, Oil, Tea, Fish, Meat, Snack, Seasoning, Dairy Products
Type: Automatic Labeling Machine
Driven Type: Electric
Classification: Automatic Vertical Round Bottle Labeling Machine
Customization:
Available

|

Customized Request

plastic belt

What are the challenges associated with using plastic belts, and how can they be mitigated?

Using plastic belts in various applications comes with its own set of challenges. However, these challenges can be mitigated through various measures. Here’s a detailed explanation:

  • 1. Temperature Limitations:

One of the challenges associated with plastic belts is their temperature limitations. Some plastic materials may have lower heat resistance compared to other belt materials like steel or rubber. In high-temperature environments, plastic belts may experience softening, deformation, or even melting, leading to a decrease in their performance and lifespan. To mitigate this challenge, it is important to select plastic belts with materials specifically designed to withstand the temperature range of the application. Additionally, incorporating cooling systems, such as ventilation or water cooling, can help maintain the belt’s temperature within acceptable limits.

  • 2. Load Capacity:

Another challenge is the load capacity of plastic belts, particularly in heavy-duty applications. While plastic belts have been engineered to handle significant loads, there may be limitations compared to materials like steel or fabric-reinforced rubber belts. To mitigate this challenge, it is essential to carefully analyze the weight and characteristics of the conveyed materials and select plastic belts with appropriate load-carrying capacity. Reinforcement technologies, such as embedded fibers or metal cords, can be used to enhance the strength and load capacity of plastic belts for heavier applications.

  • 3. Abrasion and Wear:

Plastic belts may face challenges related to abrasion and wear, especially in applications where materials with sharp edges or abrasive properties are being conveyed. Continuous contact with abrasive materials can cause premature wear and reduce the belt’s lifespan. To mitigate this challenge, plastic belts with enhanced wear resistance properties, such as specialized surface coatings or harder material formulations, can be used. Regular inspection and maintenance of the belts, including cleaning and proper tensioning, can also help identify and address any signs of wear before they become significant issues.

  • 4. Chemical Compatibility:

In applications where plastic belts come into contact with chemicals or substances, compatibility with those chemicals can be a challenge. Certain chemicals may cause degradation or weakening of the belt material, leading to reduced performance or even failure. To mitigate this challenge, it is crucial to select plastic belts with materials that are chemically resistant to the specific substances encountered in the application. Conducting chemical compatibility tests and consulting with belt manufacturers can help ensure that the selected plastic belts can withstand the chemical environment they will be exposed to.

  • 5. Belt Tracking and Alignment:

Plastic belts may face challenges related to tracking and alignment on the conveyor system. Misalignment can lead to increased friction, uneven wear, and potential damage to the belt and other conveyor components. To mitigate this challenge, proper belt tracking systems should be implemented, including precision tracking rollers, training idlers, or automated belt tracking mechanisms. Regular maintenance and inspection of the conveyor system can help identify and correct any issues with belt tracking and alignment before they cause significant problems.

  • 6. Static Electricity:

Plastic belts can generate static electricity due to friction between the belt and the conveyed materials or the conveyor system. This static electricity can cause issues such as dust attraction, product sticking, or even electrical discharge hazards. To mitigate this challenge, anti-static additives or coatings can be incorporated into the belt material to dissipate static charges. Proper grounding of the conveyor system and the use of static eliminators, such as ionizers or grounding brushes, can also help minimize static electricity-related problems.

In summary, while there are challenges associated with using plastic belts, they can be effectively mitigated through appropriate measures. By carefully selecting belts with suitable temperature resistance, load capacity, and wear resistance, and implementing measures to address issues related to chemical compatibility, belt tracking, and static electricity, the challenges can be managed. Regular maintenance, inspection, and adherence to manufacturer guidelines are essential for ensuring the optimal performance and longevity of plastic belts in various applications.

plastic belt

How does the durability of plastic belts compare to other materials in conveyor systems?

When comparing the durability of plastic belts to other materials used in conveyor systems, several factors come into play. Here’s a detailed explanation:

  • 1. Wear Resistance:

Plastic belts generally offer good wear resistance, allowing them to withstand the demands of many industrial applications. The specific wear resistance can vary depending on the type of plastic material used for the belt. Some plastic materials, such as polyurethane (PU) or acetal (POM), exhibit excellent wear resistance and can withstand abrasive environments better than other materials like fabric or rubber belts. However, in high-intensity applications with heavy loads or sharp objects, metal belts may provide superior wear resistance compared to plastic belts.

  • 2. Impact Resistance:

Plastic belts typically have good impact resistance, especially when compared to rigid materials like metal belts. Plastic belts can absorb and dissipate impact forces, reducing the risk of damage or breakage. This makes plastic belts suitable for applications where the conveyed products may encounter impacts during loading, unloading, or handling processes. However, in extremely demanding applications with heavy or sharp impacts, specialized metal belts or reinforced fabric belts may offer higher impact resistance than plastic belts.

  • 3. Chemical Resistance:

Plastic belts generally exhibit excellent chemical resistance compared to other materials like fabric or rubber belts. They can withstand exposure to a wide range of chemicals, oils, solvents, and cleaning agents without significant degradation. This makes plastic belts suitable for industries where corrosive substances or chemical cleaning agents are present. In contrast, fabric or rubber belts may deteriorate or experience chemical damage when exposed to aggressive substances.

  • 4. Moisture Resistance:

Plastic belts are highly resistant to moisture, making them suitable for applications in wet environments or where frequent washdowns are required. Unlike fabric belts that can absorb moisture and become weakened, plastic belts maintain their structural integrity and performance even when exposed to water or high humidity. Metal belts, on the other hand, may be prone to corrosion when exposed to moisture, requiring additional protective measures.

  • 5. Temperature Resistance:

The temperature resistance of plastic belts can vary depending on the specific plastic material used. Some plastic materials, such as polypropylene (PP) or polyethylene (PE), have lower temperature resistance compared to other materials like metal belts. However, there are plastic belt options available, such as polyurethane (PU) or polyvinyl chloride (PVC), that offer high-temperature resistance and can withstand elevated temperatures in industrial applications. It’s essential to select a plastic belt that matches the temperature range of the intended application.

  • 6. Longevity and Maintenance:

The longevity and maintenance requirements of plastic belts can be favorable compared to other materials. Plastic belts typically have a longer lifespan than fabric belts, as they are less prone to fraying, tearing, or stretching. They also require minimal maintenance, as they do not need regular lubrication or tension adjustments like metal belts. Plastic belts can be easily cleaned and sanitized, prolonging their service life. However, metal belts may offer exceptional longevity and require minimal maintenance as well.

In summary, plastic belts offer good durability in many industrial applications, particularly when it comes to wear resistance, impact resistance, chemical resistance, moisture resistance, and ease of maintenance. However, in certain demanding applications with heavy loads, sharp impacts, or extreme temperatures, specialized metal belts or reinforced fabric belts may provide superior durability. It’s crucial to assess the specific requirements of the application and select the most appropriate belt material based on the expected operating conditions and the desired level of durability.

plastic belt

Can you explain the advantages of using plastic belts over traditional materials in conveyor systems?

Using plastic belts in conveyor systems offers several advantages over traditional materials such as rubber or fabric. Plastic belts, also known as polymer belts or synthetic belts, are made from various types of plastic materials and provide unique characteristics that make them desirable for conveyor applications. Here’s a detailed explanation of the advantages of using plastic belts over traditional materials in conveyor systems:

  • Durability and Longevity:
  • Plastic belts are known for their durability and longevity. They are resistant to wear, abrasion, and impact, allowing them to withstand harsh operating conditions. Unlike rubber or fabric belts, plastic belts do not easily degrade or stretch over time. They can handle heavy loads and maintain their shape and performance for extended periods, resulting in reduced maintenance and replacement costs for conveyor systems.

  • Versatility and Customization:
  • Plastic belts offer versatility and customization options for conveyor systems. They can be manufactured in various sizes, widths, and configurations to meet specific application requirements. Plastic belts can have different surface patterns, such as smooth, textured, or perforated, providing enhanced grip, airflow, or product release capabilities. Additionally, plastic belts can be designed with specialized features like high temperature resistance, chemical resistance, or anti-static properties, making them suitable for diverse industries and conveyor applications.

  • Hygienic and Easy to Clean:
  • Plastic belts are highly hygienic and easy to clean, making them ideal for industries with strict cleanliness and sanitation standards. Unlike fabric belts, plastic belts do not absorb liquids or harbor bacteria, reducing the risk of contamination in food processing, pharmaceutical, or other clean environments. Plastic belts can be easily cleaned using water, steam, or cleaning agents, ensuring optimal hygiene and compliance with industry regulations.

  • Low Friction and Energy Efficiency:
  • Plastic belts offer low friction characteristics, resulting in energy-efficient conveyor systems. The reduced friction between the belt and the conveyor components minimizes power consumption, allowing for cost savings and environmental benefits. Additionally, the low friction properties of plastic belts contribute to smoother and quieter operation, reducing noise levels in the workplace.

  • Chemical Resistance:
  • Plastic belts exhibit excellent chemical resistance, making them suitable for conveyor systems that handle corrosive or aggressive substances. They can withstand exposure to various chemicals, oils, solvents, and cleaning agents without deteriorating or experiencing significant damage. Plastic belts’ chemical resistance ensures their longevity and reliability in industries such as chemical processing, pharmaceuticals, or wastewater treatment.

  • Lightweight and Easy Installation:
  • Plastic belts are lightweight compared to traditional materials, facilitating easy installation and maintenance of conveyor systems. The reduced weight of plastic belts reduces the strain on conveyor components, extending their lifespan. Additionally, the lightweight nature of plastic belts simplifies handling during installation or replacement, improving efficiency and reducing downtime.

In summary, using plastic belts in conveyor systems offers significant advantages over traditional materials. They provide durability, versatility, and customization options, ensuring long-lasting and efficient performance. Plastic belts are hygienic, easy to clean, and resistant to chemicals, making them suitable for industries with strict cleanliness requirements. They offer low friction and energy efficiency, contributing to cost savings and environmental benefits. Moreover, plastic belts are lightweight and easy to install, simplifying maintenance and reducing downtime. These advantages make plastic belts a preferred choice in various industries for their conveyor system needs.

China Best Sales Hzpk Arlm-160A Perfume Bottle Small Jar Labeling Machine with Printer   example of wheel and axleChina Best Sales Hzpk Arlm-160A Perfume Bottle Small Jar Labeling Machine with Printer   example of wheel and axle
editor by CX 2024-02-23

China wholesaler Hzpk Arlm-160A Glass Jar Automatic Bottle Labeling Machine Small wheel and axle

Product Description

1. More than10 years manufacture in packing machine
2. 10 years alibaba supplier
3. 100% QC inspection before shipment
4. 12 months warranty
5. Product Certificated by CE
 

Introduction:
ARLM-160A Automatic Labeling Machine can meet the needs of semi circle labeling, bottle labeling switching between simple, convenient adjustment; 
Wide application range: self-adhesive labels, adhesive film, electronic monitoring code, bar code etc..
Application Industry: widely used in food, medicine, cosmetics, daily chemical, electronics, hardware, plastics and other industries. 
Application example: PET round bottle labeling, plastic bottle labeling, canned food, etc.

Features:
1. Labeling quality, using standard of spring cover belt, labeling smooth, no wrinkles, improve packaging quality.
2. Flexible application, bottle stand vertical labeling, with automatic sub bottle function, can be stand-alone production, can also be connected to the production line.
3. Intelligent control, automatic photoelectric tracking, with no matter no labeling, no standard automatic calibration and label automatic detection function, prevent leakage and label waste.
4. Simple adjustment, labeling speed, conveying speed, bottle speed can be achieved stepless speed regulation, according to the need to adjust.
5. Durable, using 3 bar adjustment mechanism, make full use of triangular stability, solid durable machine. Made of stainless steel and advanced aluminum alloy, accord with CE Production requirements.

Customized Functions:
1. Can add coding,printing
2. The conveyor can be replaced with a chain plate
3. The width,length,hight can be customize   
4. The custom function is applicable to all automatic labeling machines
5. The machine can only be used to sticker labels, can be customized to stick transparent labels, need to change the optical fiber to transparent optical fiber.(Conventional label by induction color; Transparent label by induction thickness)

Note: 
This machine is standard machine, can only be used normal round bottles , can not be too soft or bulge. 
Can be customized if the bottle has grooves.

Parameter:

Model ARLM-160A
Power 550W
Filling speed 10-50PCS/min
Filling accuracy ±1%
Bottle diameter 30-150mm
Bottle high 10-500mm
Lable Weight 20-150mm
Lable Hight 30-160mm

Q: Are you a factory or a trading company? 
A: We are factory manufacturing packaging machines and weprovide perfect OEM and after-sale service. 

Q: Can you send me the video to show how the machine works?
A: Certainly, we have made video of every machine and uploaded  them to Youtube. 

Q: How can I know your machine works well?
A: Before delivery, we shall test the machine working condition for you. 

Q: How can I know your machine is designed for my product?
A: You can send us samples of your product and we test it on machine. 

Q: How can I pay my order?
A: We accept T/T, L/C paying methods. For those orders less than 500USD, we accept Trade Assurance to pay. 

Q: Do you have a CE certificate?
A: For every model of machine, it has a CE certificate.

Your Satisfaction is Our Honor

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Automatic Grade: Automatic
Applicable Industry: Food, Cosmetics, Agriculture, Medicine, Daily Chem
Application: Cosmetics, Drinks, Cleaning, Detergent, Skin Care Products, Hair Care Products, Oil, Tea, Fish, Meat, Snack, Seasoning, Dairy Products
Type: Automatic Labeling Machine
Driven Type: Electric
Classification: Automatic Vertical Round Bottle Labeling Machine
Customization:
Available

|

Customized Request

plastic belt

What innovations and advancements have been made in plastic belt technology in recent years?

In recent years, there have been several notable innovations and advancements in plastic belt technology. Here’s a detailed explanation:

  • 1. Enhanced Material Formulations:

One significant advancement in plastic belt technology is the development of enhanced material formulations. Manufacturers have been working on creating new polymer blends or modifying existing ones to improve the performance characteristics of plastic belts. These advancements focus on enhancing properties such as strength, flexibility, wear resistance, temperature resistance, and chemical resistance. The result is the availability of plastic belts that can withstand more demanding applications, exhibit greater durability, and offer improved overall performance.

  • 2. Reinforcement Technologies:

Reinforcement technologies have been introduced to enhance the strength and load-carrying capacity of plastic belts. Reinforcements such as embedded fibers, fabric layers, or metal cords are incorporated into the belt structure to provide increased tensile strength and dimensional stability. These advancements allow plastic belts to handle heavier loads, endure higher tension levels, and resist elongation or stretching during operation. Reinforced plastic belts are particularly beneficial in industries such as logistics, manufacturing, or mining where heavy-duty conveying is required.

  • 3. Modular Belt Designs:

Modular plastic belt designs have gained popularity due to their versatility and ease of maintenance. These belts consist of interlocking modules or links that can be easily assembled and disassembled, allowing for quick belt repairs, replacements, or modifications. The modular design also enables customization of belt width, length, and configuration to suit specific conveyor systems and applications. Additionally, modular plastic belts offer improved hygiene as they have fewer crevices and joints where debris or contaminants can accumulate, making them ideal for industries such as food processing or pharmaceuticals.

  • 4. Advanced Surface Coatings:

Advancements in surface coatings have contributed to the performance and functionality of plastic belts. Innovative coatings are applied to the belt surface to enhance properties such as slip resistance, release characteristics, abrasion resistance, or chemical resistance. These coatings can improve the belt’s traction, prevent product sticking or slipping, prolong belt life, and protect against chemical damage. Additionally, specialized coatings with antimicrobial properties have been developed to inhibit the growth of bacteria or microorganisms on the belt surface, making them suitable for applications with strict hygiene requirements.

  • 5. Conveyor System Integration:

Recent advancements in plastic belt technology have also focused on improving integration with conveyor systems. Manufacturers have developed innovative designs for sprockets, guides, and other components that ensure efficient belt tracking, reduced friction, and improved overall system performance. These advancements help minimize belt wear, reduce energy consumption, and enhance the lifespan of plastic belts and other conveyor system components.

  • 6. Sustainability and Recycling:

There is an increasing emphasis on sustainability in plastic belt technology. Manufacturers are exploring eco-friendly materials and production processes to reduce the environmental impact of plastic belts. Some advancements include the use of recycled or biodegradable materials in belt manufacturing, as well as the development of recycling programs to collect and process used plastic belts at the end of their lifespan. These initiatives aim to minimize waste generation, conserve resources, and promote the circular economy in the conveyor industry.

In summary, recent years have seen significant innovations and advancements in plastic belt technology. Enhanced material formulations, reinforcement technologies, modular belt designs, advanced surface coatings, improved conveyor system integration, and a focus on sustainability have all contributed to the development of more robust, versatile, and environmentally friendly plastic belts. These advancements offer improved performance, durability, customization options, and ease of maintenance, making plastic belts a reliable choice for a wide range of conveyor applications.

plastic belt

Can you provide examples of products or machinery that utilize plastic belts for conveying purposes?

Many products and machinery across various industries utilize plastic belts for conveying purposes. Here are some examples:

  • 1. Conveyor Systems:

Plastic belts are extensively used in conveyor systems across different industries. These systems can be found in manufacturing facilities, warehouses, distribution centers, airports, and more. Conveyor systems equipped with plastic belts are employed for the transportation of a wide range of products, including packaged goods, automotive components, electronics, pharmaceuticals, food items, and beverages.

  • 2. Food Processing Equipment:

In the food processing industry, various equipment utilizes plastic belts for conveying purposes. Examples include food sorting and grading machines, washing and cleaning systems, baking ovens, cooling and freezing tunnels, and packaging lines. Plastic belts are chosen for their hygienic properties, easy cleanability, and ability to withstand the rigorous demands of food processing environments.

  • 3. Bottling and Packaging Machinery:

Bottling and packaging machinery extensively employ plastic belts for efficient product handling and packaging. Equipment such as filling machines, capping machines, labelers, cartoners, and case packers utilize plastic belts to transport bottles, containers, boxes, and other packaging materials. Plastic belts allow for smooth and precise conveying, ensuring accurate positioning and high-speed operations in the bottling and packaging processes.

  • 4. Automated Material Handling Systems:

Automated material handling systems, commonly used in industries such as automotive, electronics, and e-commerce, rely on plastic belts for conveying and sorting purposes. These systems utilize plastic belts to transport products between different stages of the production line, sort items based on various criteria, and load or unload materials in warehouses or distribution centers. Plastic belts enable efficient and reliable material handling in these automated systems.

  • 5. Printing and Paper Handling Equipment:

Printing presses, bindery equipment, and paper handling machines often incorporate plastic belts for the smooth movement of paper sheets, printed materials, or packaging components. Plastic belts with anti-static properties are particularly used in these applications to prevent static buildup and ensure the safe handling of sensitive materials.

  • 6. Cleanroom and Electronics Manufacturing Equipment:

Cleanroom environments and electronics manufacturing facilities utilize plastic belts for conveying delicate electronic components, circuit boards, and semiconductors. Plastic belts with low particulate generation and excellent cleanroom compatibility are crucial in these industries to maintain strict cleanliness standards and prevent contamination or damage to sensitive electronic devices.

These are just a few examples of products and machinery that utilize plastic belts for conveying purposes. Plastic belts offer versatility, reliability, and customization options, making them suitable for a wide range of applications across various industries.

plastic belt

What are plastic belts, and how are they used in various industries?

Plastic belts, also known as polymer belts or synthetic belts, are conveyor belts made from various types of plastic materials. These belts are used in a wide range of industries for conveying, transporting, or processing materials or products. Plastic belts offer several advantages over traditional belt materials such as rubber or fabric, including durability, versatility, and ease of maintenance. Here’s a detailed explanation of plastic belts and their applications in various industries:

  • Composition and Construction:
  • Plastic belts are typically made from materials such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PU), or acetal (POM). These materials provide properties such as high strength, chemical resistance, low friction, and flexibility. Plastic belts are manufactured through processes like extrusion, injection molding, or bonding, resulting in a wide variety of belt types, including flat belts, modular belts, timing belts, and conveyor chains.

  • Food and Beverage Industry:
  • Plastic belts find extensive use in the food and beverage industry. They are employed in applications such as food processing, packaging, sorting, and transportation. Plastic belts are preferred in these industries due to their hygienic properties, resistance to moisture and chemicals, and ease of cleaning. They are commonly used in conveying and sorting systems for products like fruits, vegetables, baked goods, meat, poultry, and beverages.

  • Automotive Industry:
  • In the automotive industry, plastic belts are utilized for various purposes. They are employed in assembly lines for transporting automotive components during the manufacturing process. Plastic belts with specialized features, such as high temperature resistance or static dissipation properties, are used in applications like paint shops, heat treatment processes, or electrostatic discharge-sensitive areas. Plastic belts provide reliable and efficient material handling solutions in automotive production facilities.

  • Packaging and Logistics:
  • Plastic belts play a crucial role in packaging and logistics operations. They are used in conveyor systems for handling packages, cartons, boxes, or containers in industries such as e-commerce, retail, distribution centers, and postal services. Plastic belts offer smooth and reliable transportation, enabling efficient sorting, merging, diverging, and accumulation of items. Their flexibility and customization options make them suitable for a wide range of packaging and logistics applications.

  • Agriculture and Horticulture:
  • In the agriculture and horticulture industries, plastic belts are employed for tasks like seed sorting, crop harvesting, and greenhouse operations. Plastic belts with specialized features like perforations or airflow patterns are used to facilitate the handling and processing of seeds, fruits, vegetables, or flowers. They provide gentle and efficient transportation, reducing damage to delicate agricultural products and improving productivity in these sectors.

  • Other Industries:
  • Plastic belts find applications in various other industries as well. They are used in industries such as pharmaceuticals, electronics, textile manufacturing, recycling, and airport baggage handling. Plastic belts offer advantages like chemical resistance, anti-static properties, and low noise levels, making them suitable for specific requirements in these industries.

In summary, plastic belts are conveyor belts made from plastic materials and are widely used in various industries. They offer durability, versatility, and ease of maintenance, making them suitable for applications in food and beverage processing, automotive manufacturing, packaging and logistics, agriculture and horticulture, and many other sectors. Plastic belts provide efficient material handling solutions, ensuring smooth transportation, sorting, and processing of products or materials in diverse industrial settings.

China wholesaler Hzpk Arlm-160A Glass Jar Automatic Bottle Labeling Machine Small   wheel and axleChina wholesaler Hzpk Arlm-160A Glass Jar Automatic Bottle Labeling Machine Small   wheel and axle
editor by CX 2024-02-23

China Custom Automatic Plastic Round Bottle Labeling Machine axle end caps

Product Description

1. More than 10 years manufacture in packing machine

2. 10 years alibaba supplier
3. 100% QC inspection before shipment
4. 12 months warranty
5. Product Certificated by CE

Introduction:
ARLM-200A Automatic Labeling Machine can meet the needs of semi circle labeling, bottle labeling switching between simple, convenient adjustment; 
Wide application range: self-adhesive labels, adhesive film, electronic monitoring code, bar code etc..
Application Industry: widely used in food, medicine, cosmetics, daily chemical, electronics, hardware, plastics and other industries. 
Application example: PET round bottle labeling, plastic bottle labeling, canned food, etc.

Features:
1. Labeling quality, using standard of spring cover belt, labeling smooth, no wrinkles, improve packaging quality.
2. Flexible application, bottle stand vertical labeling, with automatic sub bottle function, can be stand-alone production, can also be connected to the production line.
3. Intelligent control, automatic photoelectric tracking, with no matter no labeling, no standard automatic calibration and label automatic detection function, prevent leakage and label waste.
4. Simple adjustment, labeling speed, conveying speed, bottle speed can be achieved stepless speed regulation, according to the need to adjust.
5. Durable, using 3 bar adjustment mechanism, make full use of triangular stability, solid durable machine. Made of stainless steel and advanced aluminum alloy, accord with CE Production requirements.

All use word-class famous brands.
All materials are stainless steel 304
Cylinder: AirTAC
PLC: AELTA
Touch screen: WEINVIEW
Motor: MAILI
Sensor: LEUZE

Note: 
Standard machine can only be used normal round bottles , can not be too soft or bulge, can be customized if the bottle has grooves.

Customized Functions:
1. Can add coding,printing
2. The conveyor can be replaced with a chain plate
3. The width,length,hight can be customize   
4. The custom function is applicable to all automatic labeling machines
5. The machine can only be used to sticker labels, can be customized to stick transparent labels, need to change the optical fiber to transparent optical fiber.(Conventional label by induction color; Transparent label by induction thickness)

Parameter:

Model ARLM-200A
Power 550W
Labeling Accuracy ±1mm
Labeling Speed 10-50pcs/min
Label Size W: 20-150mm,L: 30-160mm
Bottle diameter 30-150mm

Q: Are you a factory or a trading company? 
A: We are factory manufacturing packaging machines and weprovide perfect OEM and after-sale service. 

Q: Can you send me the video to show how the machine works?
A: Certainly, we have made video of every machine and uploaded  them to Youtube. 

Q: How can I know your machine works well?
A: Before delivery, we shall test the machine working condition for you. 

Q: How can I know your machine is designed for my product?
A: You can send us samples of your product and we test it on machine. 

Q: How can I pay my order?
A: We accept T/T, L/C paying methods. For those orders less than 500USD, we accept Trade Assurance to pay. 

Q: Do you have a CE certificate?
A: For every model of machine, it has a CE certificate.

Your Satisfaction is Our Honor

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Automatic Grade: Automatic
Applicable Industry: Round Bottle Labeling
Application: Cosmetics, Drinks, Cleaning, Detergent, Skin Care Products, Hair Care Products, Oil, Dairy Products
Type: Automatic Labeling Machine
Driven Type: Electric
Classification: Automatic Round Bottle Labeling Machine
Customization:
Available

|

Customized Request

plastic belt

What innovations and advancements have been made in plastic belt technology in recent years?

In recent years, there have been several notable innovations and advancements in plastic belt technology. Here’s a detailed explanation:

  • 1. Enhanced Material Formulations:

One significant advancement in plastic belt technology is the development of enhanced material formulations. Manufacturers have been working on creating new polymer blends or modifying existing ones to improve the performance characteristics of plastic belts. These advancements focus on enhancing properties such as strength, flexibility, wear resistance, temperature resistance, and chemical resistance. The result is the availability of plastic belts that can withstand more demanding applications, exhibit greater durability, and offer improved overall performance.

  • 2. Reinforcement Technologies:

Reinforcement technologies have been introduced to enhance the strength and load-carrying capacity of plastic belts. Reinforcements such as embedded fibers, fabric layers, or metal cords are incorporated into the belt structure to provide increased tensile strength and dimensional stability. These advancements allow plastic belts to handle heavier loads, endure higher tension levels, and resist elongation or stretching during operation. Reinforced plastic belts are particularly beneficial in industries such as logistics, manufacturing, or mining where heavy-duty conveying is required.

  • 3. Modular Belt Designs:

Modular plastic belt designs have gained popularity due to their versatility and ease of maintenance. These belts consist of interlocking modules or links that can be easily assembled and disassembled, allowing for quick belt repairs, replacements, or modifications. The modular design also enables customization of belt width, length, and configuration to suit specific conveyor systems and applications. Additionally, modular plastic belts offer improved hygiene as they have fewer crevices and joints where debris or contaminants can accumulate, making them ideal for industries such as food processing or pharmaceuticals.

  • 4. Advanced Surface Coatings:

Advancements in surface coatings have contributed to the performance and functionality of plastic belts. Innovative coatings are applied to the belt surface to enhance properties such as slip resistance, release characteristics, abrasion resistance, or chemical resistance. These coatings can improve the belt’s traction, prevent product sticking or slipping, prolong belt life, and protect against chemical damage. Additionally, specialized coatings with antimicrobial properties have been developed to inhibit the growth of bacteria or microorganisms on the belt surface, making them suitable for applications with strict hygiene requirements.

  • 5. Conveyor System Integration:

Recent advancements in plastic belt technology have also focused on improving integration with conveyor systems. Manufacturers have developed innovative designs for sprockets, guides, and other components that ensure efficient belt tracking, reduced friction, and improved overall system performance. These advancements help minimize belt wear, reduce energy consumption, and enhance the lifespan of plastic belts and other conveyor system components.

  • 6. Sustainability and Recycling:

There is an increasing emphasis on sustainability in plastic belt technology. Manufacturers are exploring eco-friendly materials and production processes to reduce the environmental impact of plastic belts. Some advancements include the use of recycled or biodegradable materials in belt manufacturing, as well as the development of recycling programs to collect and process used plastic belts at the end of their lifespan. These initiatives aim to minimize waste generation, conserve resources, and promote the circular economy in the conveyor industry.

In summary, recent years have seen significant innovations and advancements in plastic belt technology. Enhanced material formulations, reinforcement technologies, modular belt designs, advanced surface coatings, improved conveyor system integration, and a focus on sustainability have all contributed to the development of more robust, versatile, and environmentally friendly plastic belts. These advancements offer improved performance, durability, customization options, and ease of maintenance, making plastic belts a reliable choice for a wide range of conveyor applications.

plastic belt

Can you provide examples of products or machinery that utilize plastic belts for conveying purposes?

Many products and machinery across various industries utilize plastic belts for conveying purposes. Here are some examples:

  • 1. Conveyor Systems:

Plastic belts are extensively used in conveyor systems across different industries. These systems can be found in manufacturing facilities, warehouses, distribution centers, airports, and more. Conveyor systems equipped with plastic belts are employed for the transportation of a wide range of products, including packaged goods, automotive components, electronics, pharmaceuticals, food items, and beverages.

  • 2. Food Processing Equipment:

In the food processing industry, various equipment utilizes plastic belts for conveying purposes. Examples include food sorting and grading machines, washing and cleaning systems, baking ovens, cooling and freezing tunnels, and packaging lines. Plastic belts are chosen for their hygienic properties, easy cleanability, and ability to withstand the rigorous demands of food processing environments.

  • 3. Bottling and Packaging Machinery:

Bottling and packaging machinery extensively employ plastic belts for efficient product handling and packaging. Equipment such as filling machines, capping machines, labelers, cartoners, and case packers utilize plastic belts to transport bottles, containers, boxes, and other packaging materials. Plastic belts allow for smooth and precise conveying, ensuring accurate positioning and high-speed operations in the bottling and packaging processes.

  • 4. Automated Material Handling Systems:

Automated material handling systems, commonly used in industries such as automotive, electronics, and e-commerce, rely on plastic belts for conveying and sorting purposes. These systems utilize plastic belts to transport products between different stages of the production line, sort items based on various criteria, and load or unload materials in warehouses or distribution centers. Plastic belts enable efficient and reliable material handling in these automated systems.

  • 5. Printing and Paper Handling Equipment:

Printing presses, bindery equipment, and paper handling machines often incorporate plastic belts for the smooth movement of paper sheets, printed materials, or packaging components. Plastic belts with anti-static properties are particularly used in these applications to prevent static buildup and ensure the safe handling of sensitive materials.

  • 6. Cleanroom and Electronics Manufacturing Equipment:

Cleanroom environments and electronics manufacturing facilities utilize plastic belts for conveying delicate electronic components, circuit boards, and semiconductors. Plastic belts with low particulate generation and excellent cleanroom compatibility are crucial in these industries to maintain strict cleanliness standards and prevent contamination or damage to sensitive electronic devices.

These are just a few examples of products and machinery that utilize plastic belts for conveying purposes. Plastic belts offer versatility, reliability, and customization options, making them suitable for a wide range of applications across various industries.

plastic belt

In what industries are plastic belts commonly employed for material handling?

Plastic belts are widely employed for material handling in various industries. Here’s a detailed explanation:

  • 1. Food and Beverage Industry:

In the food and beverage industry, plastic belts are extensively used for material handling due to their hygienic properties, chemical resistance, and ease of cleaning. They are employed in applications such as conveying fruits, vegetables, baked goods, packaged foods, beverages, and dairy products. Plastic belts ensure safe and efficient transportation of food items while adhering to strict hygiene standards and preventing contamination.

  • 2. Packaging and Logistics Industry:

Plastic belts find wide application in the packaging and logistics industry for the movement of packages, parcels, and containers. They are used in conveyor systems for sorting, merging, diverting, and accumulating packages during packaging, warehousing, and distribution processes. Plastic belts offer high strength, flexibility, and durability, allowing efficient handling of various package sizes and shapes.

  • 3. Manufacturing and Assembly Industry:

In manufacturing and assembly processes, plastic belts are commonly employed for material handling tasks. They facilitate the transportation of components, parts, and products between different stages of production lines. Plastic belts can handle heavy loads, endure high-speed operations, and navigate through complex layouts, making them suitable for applications in automotive, electronics, appliances, and other manufacturing sectors.

  • 4. Pharmaceutical and Healthcare Industry:

The pharmaceutical and healthcare industry relies on plastic belts for material handling in various stages of production, including drug manufacturing, packaging, and distribution. Plastic belts offer chemical resistance, easy cleanability, and compliance with industry regulations. They are used for conveying vials, bottles, blister packs, medical devices, and other pharmaceutical products in a controlled and hygienic environment.

  • 5. E-commerce and Retail Industry:

Plastic belts play a vital role in the e-commerce and retail industry for material handling in distribution centers, fulfillment centers, and retail stores. They are used in conveyor systems for sorting, scanning, and transporting packages and products. Plastic belts offer smooth and reliable movement of items, facilitating efficient order fulfillment, inventory management, and store replenishment processes.

  • 6. Automotive Industry:

In the automotive industry, plastic belts are employed for material handling tasks such as conveying automotive components, assemblies, and finished products. They are used in production lines for processes like painting, assembly, and testing. Plastic belts provide the necessary strength, flexibility, and wear resistance required to withstand the demanding conditions of automotive manufacturing.

These are just a few examples of the industries where plastic belts are commonly employed for material handling. Other industries such as textiles, electronics, agriculture, and mining also utilize plastic belts to streamline their material handling operations and improve overall efficiency.

China Custom Automatic Plastic Round Bottle Labeling Machine   axle end capsChina Custom Automatic Plastic Round Bottle Labeling Machine   axle end caps
editor by CX 2024-02-22

China Professional Customized Size White Plastic Nylon Pulleys for Sale with Bearings bad cv axle

Product Description

                    

Description

  1. OEM size suit for customers’ requirment
  2. Multiple color can be choosed
  3. Engraved or embossed logo accepted
  4. Large order quantity are CZPT to be fulfilled
  5. Strict quality control system
  6. In time delivery and thoughtful custom-service
  7. Certification: SGS, GB/T 19001-2016, ISO9001:2005
Material Nylon ,mc,nylon,POM,ABS,PU,PP,PE,PTFE,UHMWPE,HDPE,LDPE, PVC,etc.
Color Black, white, red, green, transparent or any color according to Pantone code 
Size As per customer’s requirements
Technology  Injection molding, CNC machining, Extrusion.
Surface Treatment Powder coating, Zinc coating, Galvanization, Electro-deposition coating, Chrome/zinc/nickel plating, Polishing, Silkscreen, Black oxide
Application Automotive, ATV, Mechanical equipment, Construction, Home appliance, Aviation,
Office facilities, Agriculture, etc.
Shippment We have longterm cooperation with internation shipping agent and express company, so that shipping safty and arriving time are secured

Our Factory

Our Machine

Our Certification

CZPT is a SGS verified manufacture. We have passed ISO9001:2005 quality control certifacation as well as environment management certification.

For fast quotation, please inform below detials;

1. Product type
2. Size (provide samples or 2d/3d drawings for reference)
3. Material specification (or let us using environment)
4. Quantity request
5. Prefer color

Our Advantage:
     
      OEM service—We are a company specialsing in making OEM mechanical parts in rubber & plastic & pu material,  and we produce according to your samples or drawings ,if they are not available, we design according to your requirements and the application. Various existing molds—We have our own CZPT factory,and after more than 30 years of continued accumulation, there is a very large amount of moulds ,so that we may save the CZPT cost for you.

Our Packing

Our usual packaging ways are as followings,or it can be as customer’s request.
Shipping:
We will choose  the shipping methods according to your request.

Contact Us

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: Type D
Manufacturing Process: Forging
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|

Order Sample

For sample price, package information, and logisti
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic belt

Can you explain the impact of temperature and chemical exposure on plastic belt performance?

The impact of temperature and chemical exposure on plastic belt performance is significant. Here’s a detailed explanation:

  • Temperature:

Temperature can have both immediate and long-term effects on plastic belt performance. Extreme temperatures can cause plastic belts to undergo physical changes that affect their structural integrity and functionality. Here are the impacts of temperature:

  • High Temperatures:

Exposure to high temperatures can cause plastic belts to soften or deform. This softening can lead to belt elongation, loss of tension, and reduced load-carrying capacity. In extreme cases, the belt may become misaligned or even melt, resulting in operational disruptions and potential damage to the conveyor system. It’s crucial to select plastic belts that can withstand the elevated temperatures of the application to ensure reliable performance and prevent premature failure.

  • Low Temperatures:

Low temperatures can make plastic belts more brittle and susceptible to cracking or breakage. The reduced flexibility of the belt material can lead to increased stress concentrations, especially in areas with sharp bends or high impact loads. Brittle belts are more prone to damage during operation, which can result in belt failure and system downtime. Choosing plastic belts specifically designed for low-temperature environments or implementing insulation measures can help mitigate the negative impact of cold temperatures on belt performance.

  • Chemical Exposure:

Chemical exposure can significantly affect plastic belt performance, depending on the type and concentration of chemicals involved. Plastic belts can experience various forms of chemical degradation, including:

  • Chemical Attack:

Some chemicals can react with the plastic material, causing it to break down or degrade. This chemical attack can result in the loss of material strength, increased brittleness, or changes in the belt’s physical properties. The severity of chemical attack depends on the specific chemical composition of the belt and the nature and concentration of the chemicals it comes into contact with. It’s crucial to select plastic belts with appropriate chemical resistance properties based on the application’s chemical environment.

  • Swelling or Dissolution:

Certain chemicals can cause plastic belts to swell or dissolve. Swelling occurs when the belt absorbs the chemical, leading to dimensional changes and potential belt misalignment. Dissolution happens when the chemical breaks down the plastic material, resulting in loss of belt structure and strength. Swelling and dissolution can compromise the integrity of the belt and its ability to perform effectively. Choosing plastic belts with resistance to the specific chemicals present in the application is essential to prevent these issues.

  • Surface Damage:

Chemical exposure can also cause surface damage to plastic belts. Some chemicals may cause staining, discoloration, or surface roughness, which can impact the belt’s appearance and potentially affect its functionality. Additionally, chemicals with abrasive properties can cause physical wear and tear on the belt surface, reducing its lifespan and increasing the risk of belt failure. Regular inspection and prompt replacement of chemically damaged belts are necessary to maintain optimal performance and prevent potential contamination of the conveyed products.

In summary, temperature and chemical exposure have significant impacts on plastic belt performance. Extreme temperatures can lead to softening, deformation, or brittleness of the belt material, affecting its structural integrity and load-carrying capacity. Chemical exposure can cause chemical attack, swelling, dissolution, or surface damage, compromising the belt’s strength, dimensional stability, and overall functionality. Selecting plastic belts designed for the specific temperature range and chemical environment of the application, along with regular inspection and maintenance, is crucial to ensure reliable and long-lasting performance of plastic belts in conveyor systems.

plastic belt

Can you provide examples of products or machinery that utilize plastic belts for conveying purposes?

Many products and machinery across various industries utilize plastic belts for conveying purposes. Here are some examples:

  • 1. Conveyor Systems:

Plastic belts are extensively used in conveyor systems across different industries. These systems can be found in manufacturing facilities, warehouses, distribution centers, airports, and more. Conveyor systems equipped with plastic belts are employed for the transportation of a wide range of products, including packaged goods, automotive components, electronics, pharmaceuticals, food items, and beverages.

  • 2. Food Processing Equipment:

In the food processing industry, various equipment utilizes plastic belts for conveying purposes. Examples include food sorting and grading machines, washing and cleaning systems, baking ovens, cooling and freezing tunnels, and packaging lines. Plastic belts are chosen for their hygienic properties, easy cleanability, and ability to withstand the rigorous demands of food processing environments.

  • 3. Bottling and Packaging Machinery:

Bottling and packaging machinery extensively employ plastic belts for efficient product handling and packaging. Equipment such as filling machines, capping machines, labelers, cartoners, and case packers utilize plastic belts to transport bottles, containers, boxes, and other packaging materials. Plastic belts allow for smooth and precise conveying, ensuring accurate positioning and high-speed operations in the bottling and packaging processes.

  • 4. Automated Material Handling Systems:

Automated material handling systems, commonly used in industries such as automotive, electronics, and e-commerce, rely on plastic belts for conveying and sorting purposes. These systems utilize plastic belts to transport products between different stages of the production line, sort items based on various criteria, and load or unload materials in warehouses or distribution centers. Plastic belts enable efficient and reliable material handling in these automated systems.

  • 5. Printing and Paper Handling Equipment:

Printing presses, bindery equipment, and paper handling machines often incorporate plastic belts for the smooth movement of paper sheets, printed materials, or packaging components. Plastic belts with anti-static properties are particularly used in these applications to prevent static buildup and ensure the safe handling of sensitive materials.

  • 6. Cleanroom and Electronics Manufacturing Equipment:

Cleanroom environments and electronics manufacturing facilities utilize plastic belts for conveying delicate electronic components, circuit boards, and semiconductors. Plastic belts with low particulate generation and excellent cleanroom compatibility are crucial in these industries to maintain strict cleanliness standards and prevent contamination or damage to sensitive electronic devices.

These are just a few examples of products and machinery that utilize plastic belts for conveying purposes. Plastic belts offer versatility, reliability, and customization options, making them suitable for a wide range of applications across various industries.

plastic belt

Can you describe the different types of plastic belts available in the market today?

There are several different types of plastic belts available in the market today, each designed to meet specific application requirements. Here’s an overview of some commonly used types:

  • 1. Modular Plastic Belts:

Modular plastic belts consist of interlocking plastic modules or links that form a continuous belt. These belts offer flexibility, allowing them to navigate around corners, bends, and other obstacles smoothly. They are commonly used in applications that require accumulation, incline/decline conveying, or small product transfer. Modular plastic belts are available in various configurations, such as flat-top, flush-grid, and raised-rib designs, to accommodate different product types and handling requirements.

  • 2. Solid Plastic Belts:

Solid plastic belts are made from a single piece of plastic material without interlocking modules. They offer a smooth and continuous surface, making them suitable for applications that require stable and consistent product conveying. Solid plastic belts are often used in industries such as food processing, where hygiene, easy cleaning, and resistance to contamination are crucial.

  • 3. Cleated Plastic Belts:

Cleated plastic belts feature integrally molded cleats or projections on their surface. These cleats help to prevent product slippage and facilitate the inclined or vertical movement of bulk materials or packages. Cleated plastic belts are commonly used in applications such as incline or decline conveying, sorting, and elevating products in industries like agriculture, recycling, and manufacturing.

  • 4. Wire Mesh Plastic Belts:

Wire mesh plastic belts consist of a plastic mesh overlaying metal or plastic rods. These belts offer an open and breathable surface, allowing for easy drainage, airflow, and visual inspection of conveyed products. They are often used in applications where heat, steam, or liquids need to pass through the belt, such as baking ovens, washing processes, or drying operations in the food industry.

  • 5. Vacuum Plastic Belts:

Vacuum plastic belts are designed with a perforated or porous surface that allows the application of vacuum pressure to hold and stabilize lightweight or delicate products during conveying. These belts are commonly used in industries such as electronics, printing, and packaging, where precise positioning and gentle handling of products are required.

  • 6. Anti-Static Plastic Belts:

Anti-static plastic belts are specifically designed to dissipate static electricity and prevent the buildup of electrostatic charges. They are used in applications where static discharge could damage sensitive electronic components or create safety hazards. Anti-static plastic belts are commonly employed in electronics manufacturing, semiconductor production, and cleanroom environments.

These are just a few examples of the different types of plastic belts available in the market today. The choice of plastic belt depends on factors such as the application requirements, load capacity, product characteristics, environmental conditions, and industry-specific regulations. Manufacturers often offer a range of customization options to tailor the belt design, material, and features to meet the specific needs of their customers.

China Professional Customized Size White Plastic Nylon Pulleys for Sale with Bearings   bad cv axleChina Professional Customized Size White Plastic Nylon Pulleys for Sale with Bearings   bad cv axle
editor by CX 2024-02-22